近似最近邻搜索的M-PCA二值嵌入

Ezgi C. Ozan, S. Kiranyaz, M. Gabbouj
{"title":"近似最近邻搜索的M-PCA二值嵌入","authors":"Ezgi C. Ozan, S. Kiranyaz, M. Gabbouj","doi":"10.1109/Trustcom.2015.554","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) is widely used within binary embedding methods for approximate nearest neighbor search and has proven to have a significant effect on the performance. Current methods aim to represent the whole data using a single PCA however, considering the Gaussian distribution requirements of PCA, this representation is not appropriate. In this study we propose using Multiple PCA (M-PCA) transformations to represent the whole data and show that it increases the performance significantly compared to methods using a single PCA.","PeriodicalId":277092,"journal":{"name":"2015 IEEE Trustcom/BigDataSE/ISPA","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"M-PCA Binary Embedding for Approximate Nearest Neighbor Search\",\"authors\":\"Ezgi C. Ozan, S. Kiranyaz, M. Gabbouj\",\"doi\":\"10.1109/Trustcom.2015.554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal Component Analysis (PCA) is widely used within binary embedding methods for approximate nearest neighbor search and has proven to have a significant effect on the performance. Current methods aim to represent the whole data using a single PCA however, considering the Gaussian distribution requirements of PCA, this representation is not appropriate. In this study we propose using Multiple PCA (M-PCA) transformations to represent the whole data and show that it increases the performance significantly compared to methods using a single PCA.\",\"PeriodicalId\":277092,\"journal\":{\"name\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Trustcom.2015.554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Trustcom/BigDataSE/ISPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom.2015.554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

主成分分析(PCA)在二值嵌入方法中广泛应用于近似最近邻搜索,并已被证明对性能有显著影响。目前的方法旨在使用单个主成分分析来表示整个数据,但考虑到主成分分析的高斯分布要求,这种表示并不合适。在本研究中,我们提出使用多个主成分(M-PCA)变换来表示整个数据,并表明与使用单个主成分的方法相比,它显着提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M-PCA Binary Embedding for Approximate Nearest Neighbor Search
Principal Component Analysis (PCA) is widely used within binary embedding methods for approximate nearest neighbor search and has proven to have a significant effect on the performance. Current methods aim to represent the whole data using a single PCA however, considering the Gaussian distribution requirements of PCA, this representation is not appropriate. In this study we propose using Multiple PCA (M-PCA) transformations to represent the whole data and show that it increases the performance significantly compared to methods using a single PCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信