{"title":"近似最近邻搜索的M-PCA二值嵌入","authors":"Ezgi C. Ozan, S. Kiranyaz, M. Gabbouj","doi":"10.1109/Trustcom.2015.554","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) is widely used within binary embedding methods for approximate nearest neighbor search and has proven to have a significant effect on the performance. Current methods aim to represent the whole data using a single PCA however, considering the Gaussian distribution requirements of PCA, this representation is not appropriate. In this study we propose using Multiple PCA (M-PCA) transformations to represent the whole data and show that it increases the performance significantly compared to methods using a single PCA.","PeriodicalId":277092,"journal":{"name":"2015 IEEE Trustcom/BigDataSE/ISPA","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"M-PCA Binary Embedding for Approximate Nearest Neighbor Search\",\"authors\":\"Ezgi C. Ozan, S. Kiranyaz, M. Gabbouj\",\"doi\":\"10.1109/Trustcom.2015.554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal Component Analysis (PCA) is widely used within binary embedding methods for approximate nearest neighbor search and has proven to have a significant effect on the performance. Current methods aim to represent the whole data using a single PCA however, considering the Gaussian distribution requirements of PCA, this representation is not appropriate. In this study we propose using Multiple PCA (M-PCA) transformations to represent the whole data and show that it increases the performance significantly compared to methods using a single PCA.\",\"PeriodicalId\":277092,\"journal\":{\"name\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Trustcom.2015.554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Trustcom/BigDataSE/ISPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom.2015.554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
M-PCA Binary Embedding for Approximate Nearest Neighbor Search
Principal Component Analysis (PCA) is widely used within binary embedding methods for approximate nearest neighbor search and has proven to have a significant effect on the performance. Current methods aim to represent the whole data using a single PCA however, considering the Gaussian distribution requirements of PCA, this representation is not appropriate. In this study we propose using Multiple PCA (M-PCA) transformations to represent the whole data and show that it increases the performance significantly compared to methods using a single PCA.