Arjun Bakshi, Yifan Mao, K. Srinivasan, S. Parthasarathy
{"title":"使用机器学习快速有效的跨频带信道预测","authors":"Arjun Bakshi, Yifan Mao, K. Srinivasan, S. Parthasarathy","doi":"10.1145/3300061.3345438","DOIUrl":null,"url":null,"abstract":"Channel information plays an important role in modern wireless communication systems. Systems that use different frequency bands for uplink and downlink communication often need feedback between devices to exchange band specific channel information. The current state-of-the-art approach proposes a way to predict the channel in the downlink based on that of the observed uplink by identifying variables underlying the uplink channel. In this paper we present a solution that greatly reduces the complexity of this task, and is even applicable for single antenna devices. Our approach uses a neural network trained on a standard channel model to generate coarse estimates for the variables underlying the channel. We then use a simple and efficient single antenna optimization framework to get more accurate variable estimates, which can be used for downlink channel prediction. We implement our approach on software defined radios and compare it to the state-of-the-art through experiments and simulations. Results show that our approach reduces the time complexity by at least an order of magnitude (10x), while maintaining similar prediction quality.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Fast and Efficient Cross Band Channel Prediction Using Machine Learning\",\"authors\":\"Arjun Bakshi, Yifan Mao, K. Srinivasan, S. Parthasarathy\",\"doi\":\"10.1145/3300061.3345438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel information plays an important role in modern wireless communication systems. Systems that use different frequency bands for uplink and downlink communication often need feedback between devices to exchange band specific channel information. The current state-of-the-art approach proposes a way to predict the channel in the downlink based on that of the observed uplink by identifying variables underlying the uplink channel. In this paper we present a solution that greatly reduces the complexity of this task, and is even applicable for single antenna devices. Our approach uses a neural network trained on a standard channel model to generate coarse estimates for the variables underlying the channel. We then use a simple and efficient single antenna optimization framework to get more accurate variable estimates, which can be used for downlink channel prediction. We implement our approach on software defined radios and compare it to the state-of-the-art through experiments and simulations. Results show that our approach reduces the time complexity by at least an order of magnitude (10x), while maintaining similar prediction quality.\",\"PeriodicalId\":223523,\"journal\":{\"name\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3300061.3345438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3345438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast and Efficient Cross Band Channel Prediction Using Machine Learning
Channel information plays an important role in modern wireless communication systems. Systems that use different frequency bands for uplink and downlink communication often need feedback between devices to exchange band specific channel information. The current state-of-the-art approach proposes a way to predict the channel in the downlink based on that of the observed uplink by identifying variables underlying the uplink channel. In this paper we present a solution that greatly reduces the complexity of this task, and is even applicable for single antenna devices. Our approach uses a neural network trained on a standard channel model to generate coarse estimates for the variables underlying the channel. We then use a simple and efficient single antenna optimization framework to get more accurate variable estimates, which can be used for downlink channel prediction. We implement our approach on software defined radios and compare it to the state-of-the-art through experiments and simulations. Results show that our approach reduces the time complexity by at least an order of magnitude (10x), while maintaining similar prediction quality.