基于鲁棒统计的图像比较新豪斯多夫距离

Oh-K. Kwon, D. Sim, Rae-Hong Park
{"title":"基于鲁棒统计的图像比较新豪斯多夫距离","authors":"Oh-K. Kwon, D. Sim, Rae-Hong Park","doi":"10.1109/ICIP.1996.560359","DOIUrl":null,"url":null,"abstract":"A Hausdorff distance (HD) is one of commonly used measures for object matching. It calculates the distance between two point sets of edges in two-dimensional binary images without establishing correspondences. This paper analyzes the conventional HD measures based on robust statistics, and proposes robust HD measures based on M-estimation, least trimmed square (LTS), and /spl alpha/-trimmed mean methods. The matching performance by the conventional and proposed HD measures is compared with synthetic and real images.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"New Hausdorff distances based on robust statistics for comparing images\",\"authors\":\"Oh-K. Kwon, D. Sim, Rae-Hong Park\",\"doi\":\"10.1109/ICIP.1996.560359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Hausdorff distance (HD) is one of commonly used measures for object matching. It calculates the distance between two point sets of edges in two-dimensional binary images without establishing correspondences. This paper analyzes the conventional HD measures based on robust statistics, and proposes robust HD measures based on M-estimation, least trimmed square (LTS), and /spl alpha/-trimmed mean methods. The matching performance by the conventional and proposed HD measures is compared with synthetic and real images.\",\"PeriodicalId\":192947,\"journal\":{\"name\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1996.560359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.560359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

豪斯多夫距离(HD)是一种常用的目标匹配度量。它在不建立对应关系的情况下计算二维二值图像中两个边缘点集之间的距离。本文分析了传统的基于鲁棒统计量的HD测度,提出了基于m估计、最小裁剪平方(LTS)和/spl alpha/裁剪平均方法的鲁棒HD测度。将传统的和提出的高清方法的匹配性能与合成图像和真实图像进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Hausdorff distances based on robust statistics for comparing images
A Hausdorff distance (HD) is one of commonly used measures for object matching. It calculates the distance between two point sets of edges in two-dimensional binary images without establishing correspondences. This paper analyzes the conventional HD measures based on robust statistics, and proposes robust HD measures based on M-estimation, least trimmed square (LTS), and /spl alpha/-trimmed mean methods. The matching performance by the conventional and proposed HD measures is compared with synthetic and real images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信