{"title":"TipMe:针对用户和企业的个性化广告和基于方面的意见挖掘","authors":"Dimitris Proios, M. Eirinaki, Iraklis Varlamis","doi":"10.1145/2808797.2809324","DOIUrl":null,"url":null,"abstract":"Online advertisements are a major source of profit and customer attraction for web-based businesses. In a successful advertisement campaign, both users and businesses can benefit, as users are expected to respond positively to special offers and recommendations of their liking and businesses are able to reach the most promising potential customers. The extraction of user preferences from content provided in social media and especially in review sites can be a valuable tool both for users and businesses. In this paper, we propose a model for the analysis of content from product review sites, which considers in tandem the aspects discussed by users and the opinions associated with each aspect. The model provides two different visualizations: one for businesses that uncovers their weak and strong points against their competitors and one for end-users who receive suggestions about products of potential interest. The former is an aggregation of aspect-based opinions provided by all users and the latter is a collaborative filtering approach, which calculates user similarity over a projection of the original bipartite graph (user-item rating graph) over a content-based clustering of users and items. The model takes advantage of the feedback users give to businesses in review sites, and employ opinion mining techniques to identify the opinions of users for specific aspects of a business. Such aspects and their polarity can be used to create user and business profiles, which can subsequently be fed in a clustering and recommendation process. We envision this model as a powerful tool for planning and executing a successful marketing campaign via online media. Finally, we demonstrate how our prototype can be used in different scenarios to assist users or business owners, using the Yelp challenge dataset.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"TipMe: Personalized advertising and aspect-based opinion mining for users and businesses\",\"authors\":\"Dimitris Proios, M. Eirinaki, Iraklis Varlamis\",\"doi\":\"10.1145/2808797.2809324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online advertisements are a major source of profit and customer attraction for web-based businesses. In a successful advertisement campaign, both users and businesses can benefit, as users are expected to respond positively to special offers and recommendations of their liking and businesses are able to reach the most promising potential customers. The extraction of user preferences from content provided in social media and especially in review sites can be a valuable tool both for users and businesses. In this paper, we propose a model for the analysis of content from product review sites, which considers in tandem the aspects discussed by users and the opinions associated with each aspect. The model provides two different visualizations: one for businesses that uncovers their weak and strong points against their competitors and one for end-users who receive suggestions about products of potential interest. The former is an aggregation of aspect-based opinions provided by all users and the latter is a collaborative filtering approach, which calculates user similarity over a projection of the original bipartite graph (user-item rating graph) over a content-based clustering of users and items. The model takes advantage of the feedback users give to businesses in review sites, and employ opinion mining techniques to identify the opinions of users for specific aspects of a business. Such aspects and their polarity can be used to create user and business profiles, which can subsequently be fed in a clustering and recommendation process. We envision this model as a powerful tool for planning and executing a successful marketing campaign via online media. Finally, we demonstrate how our prototype can be used in different scenarios to assist users or business owners, using the Yelp challenge dataset.\",\"PeriodicalId\":371988,\"journal\":{\"name\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808797.2809324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2809324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TipMe: Personalized advertising and aspect-based opinion mining for users and businesses
Online advertisements are a major source of profit and customer attraction for web-based businesses. In a successful advertisement campaign, both users and businesses can benefit, as users are expected to respond positively to special offers and recommendations of their liking and businesses are able to reach the most promising potential customers. The extraction of user preferences from content provided in social media and especially in review sites can be a valuable tool both for users and businesses. In this paper, we propose a model for the analysis of content from product review sites, which considers in tandem the aspects discussed by users and the opinions associated with each aspect. The model provides two different visualizations: one for businesses that uncovers their weak and strong points against their competitors and one for end-users who receive suggestions about products of potential interest. The former is an aggregation of aspect-based opinions provided by all users and the latter is a collaborative filtering approach, which calculates user similarity over a projection of the original bipartite graph (user-item rating graph) over a content-based clustering of users and items. The model takes advantage of the feedback users give to businesses in review sites, and employ opinion mining techniques to identify the opinions of users for specific aspects of a business. Such aspects and their polarity can be used to create user and business profiles, which can subsequently be fed in a clustering and recommendation process. We envision this model as a powerful tool for planning and executing a successful marketing campaign via online media. Finally, we demonstrate how our prototype can be used in different scenarios to assist users or business owners, using the Yelp challenge dataset.