语义关系学习中的及物性

F. Fallucchi, Fabio Massimo Zanzotto
{"title":"语义关系学习中的及物性","authors":"F. Fallucchi, Fabio Massimo Zanzotto","doi":"10.1109/NLPKE.2010.5587773","DOIUrl":null,"url":null,"abstract":"Text understanding models exploit semantic networks of words as basic components. Automatically enriching and expanding these resources is then an important challenge for NLP. Existing models for enriching semantic resources based on lexical-syntactic patterns make little use of structural properties of target semantic relations. In this paper, we propose a novel approach to include transitivity in probabilistic models for expanding semantic resources. We directly include transitivity in the formulation of probabilistic models. Experiments demonstrate that these models are an effective way for exploiting structural properties of relations in learning semantic networks.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transitivity in semantic relation learning\",\"authors\":\"F. Fallucchi, Fabio Massimo Zanzotto\",\"doi\":\"10.1109/NLPKE.2010.5587773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text understanding models exploit semantic networks of words as basic components. Automatically enriching and expanding these resources is then an important challenge for NLP. Existing models for enriching semantic resources based on lexical-syntactic patterns make little use of structural properties of target semantic relations. In this paper, we propose a novel approach to include transitivity in probabilistic models for expanding semantic resources. We directly include transitivity in the formulation of probabilistic models. Experiments demonstrate that these models are an effective way for exploiting structural properties of relations in learning semantic networks.\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

文本理解模型利用词的语义网络作为基本组成部分。自动丰富和扩展这些资源是NLP面临的一个重要挑战。现有的基于词汇句法模式的语义资源丰富模型很少利用目标语义关系的结构特性。在本文中,我们提出了一种将及物性纳入概率模型的新方法来扩展语义资源。我们在概率模型的表述中直接包含传递性。实验表明,这些模型是挖掘语义网络中关系结构特性的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transitivity in semantic relation learning
Text understanding models exploit semantic networks of words as basic components. Automatically enriching and expanding these resources is then an important challenge for NLP. Existing models for enriching semantic resources based on lexical-syntactic patterns make little use of structural properties of target semantic relations. In this paper, we propose a novel approach to include transitivity in probabilistic models for expanding semantic resources. We directly include transitivity in the formulation of probabilistic models. Experiments demonstrate that these models are an effective way for exploiting structural properties of relations in learning semantic networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信