上下文感知的候选图像裁剪

Tianpei Lian, Z. Cao, Ke Xian, Zhiyu Pan, Weicai Zhong
{"title":"上下文感知的候选图像裁剪","authors":"Tianpei Lian, Z. Cao, Ke Xian, Zhiyu Pan, Weicai Zhong","doi":"10.1109/ICIP42928.2021.9506111","DOIUrl":null,"url":null,"abstract":"Image cropping aims to enhance the aesthetic quality of a given image by removing unwanted areas. Existing image cropping methods can be divided into two groups: candidate-based and candidate-free methods. For candidate-based methods, dense predefined candidate boxes can indeed cover good boxes, but most candidates with low aesthetic quality may disturb the following judgment and lead to an undesirable result. For candidate-free methods, the cropping box is directly acquired according to certain prior knowledge. However, the effect of only one box is not stable enough due to the subjectivity of image cropping. In order to combine the advantages of the above methods and overcome these shortcomings, we need fewer but more representative candidate boxes. To this end, we propose FCRNet, a fully convolutional regression network, which predicts several context-aware cropping boxes in an ensemble manner as candidates. A multi-task loss is employed to supervise the generation of candidates. Unlike previous candidate-based works, FCRNet outputs a small number of context-aware candidates without any predefined box and the final result is selected from these candidates by an aesthetic evaluation network or even manual selection. Extensive experiments show the superiority of our context-aware candidates based method over the state-of-the-art approaches.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Context-Aware Candidates for Image Cropping\",\"authors\":\"Tianpei Lian, Z. Cao, Ke Xian, Zhiyu Pan, Weicai Zhong\",\"doi\":\"10.1109/ICIP42928.2021.9506111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image cropping aims to enhance the aesthetic quality of a given image by removing unwanted areas. Existing image cropping methods can be divided into two groups: candidate-based and candidate-free methods. For candidate-based methods, dense predefined candidate boxes can indeed cover good boxes, but most candidates with low aesthetic quality may disturb the following judgment and lead to an undesirable result. For candidate-free methods, the cropping box is directly acquired according to certain prior knowledge. However, the effect of only one box is not stable enough due to the subjectivity of image cropping. In order to combine the advantages of the above methods and overcome these shortcomings, we need fewer but more representative candidate boxes. To this end, we propose FCRNet, a fully convolutional regression network, which predicts several context-aware cropping boxes in an ensemble manner as candidates. A multi-task loss is employed to supervise the generation of candidates. Unlike previous candidate-based works, FCRNet outputs a small number of context-aware candidates without any predefined box and the final result is selected from these candidates by an aesthetic evaluation network or even manual selection. Extensive experiments show the superiority of our context-aware candidates based method over the state-of-the-art approaches.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像裁剪旨在通过去除不需要的区域来增强给定图像的美学质量。现有的图像裁剪方法可分为基于候选点的和无候选点的两大类。对于基于候选的方法,密集的预定义候选框确实可以覆盖好的候选框,但是大多数审美质量较低的候选框可能会干扰后续的判断,导致不理想的结果。对于无候选者方法,根据一定的先验知识直接获取裁剪框。但由于图像裁剪的主观性,单框的效果不够稳定。为了结合以上方法的优点,克服这些缺点,我们需要更少但更有代表性的候选框。为此,我们提出了FCRNet,一个全卷积回归网络,它以集成的方式预测几个上下文感知裁剪框作为候选。采用多任务损失来监督候选人的生成。与之前基于候选对象的作品不同,FCRNet输出少量上下文感知的候选对象,没有任何预定义的框,最终结果由审美评估网络甚至人工选择从这些候选对象中选出。大量的实验表明,我们基于上下文感知的候选方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-Aware Candidates for Image Cropping
Image cropping aims to enhance the aesthetic quality of a given image by removing unwanted areas. Existing image cropping methods can be divided into two groups: candidate-based and candidate-free methods. For candidate-based methods, dense predefined candidate boxes can indeed cover good boxes, but most candidates with low aesthetic quality may disturb the following judgment and lead to an undesirable result. For candidate-free methods, the cropping box is directly acquired according to certain prior knowledge. However, the effect of only one box is not stable enough due to the subjectivity of image cropping. In order to combine the advantages of the above methods and overcome these shortcomings, we need fewer but more representative candidate boxes. To this end, we propose FCRNet, a fully convolutional regression network, which predicts several context-aware cropping boxes in an ensemble manner as candidates. A multi-task loss is employed to supervise the generation of candidates. Unlike previous candidate-based works, FCRNet outputs a small number of context-aware candidates without any predefined box and the final result is selected from these candidates by an aesthetic evaluation network or even manual selection. Extensive experiments show the superiority of our context-aware candidates based method over the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信