大众经济学促进了社交媒体搜索和排名

Majdi Rawashdeh, Heung-Nam Kim, Abdulmotaleb El Saddik
{"title":"大众经济学促进了社交媒体搜索和排名","authors":"Majdi Rawashdeh, Heung-Nam Kim, Abdulmotaleb El Saddik","doi":"10.1145/1991996.1992023","DOIUrl":null,"url":null,"abstract":"With the rapid proliferation of social media services, users on the social Web are overwhelmed by the huge amount of social media available. In this paper, we look into the potential of social tagging in social media services to help users in retrieving social media. By leveraging social tagging, we propose a new personalized search method to enhance not only retrieval accuracy but also retrieval coverage. Our approach first determines the similarities between resources and between tags. Thereafter, we build two models: a user-tag relation model that reflects how a certain user has assigned tags similar to a given tag and a tag-item relation model that captures how a certain tag has been tagged to resources similar to a given resource. We then seamlessly map the tags on the items depending on a particular user's query in order to find the most attractive media content relevant to the user needs. The experimental evaluations have shown the proposed method achieves better search results than state-of-the art algorithms in terms of accuracy and coverage.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Folksonomy-boosted social media search and ranking\",\"authors\":\"Majdi Rawashdeh, Heung-Nam Kim, Abdulmotaleb El Saddik\",\"doi\":\"10.1145/1991996.1992023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid proliferation of social media services, users on the social Web are overwhelmed by the huge amount of social media available. In this paper, we look into the potential of social tagging in social media services to help users in retrieving social media. By leveraging social tagging, we propose a new personalized search method to enhance not only retrieval accuracy but also retrieval coverage. Our approach first determines the similarities between resources and between tags. Thereafter, we build two models: a user-tag relation model that reflects how a certain user has assigned tags similar to a given tag and a tag-item relation model that captures how a certain tag has been tagged to resources similar to a given resource. We then seamlessly map the tags on the items depending on a particular user's query in order to find the most attractive media content relevant to the user needs. The experimental evaluations have shown the proposed method achieves better search results than state-of-the art algorithms in terms of accuracy and coverage.\",\"PeriodicalId\":390933,\"journal\":{\"name\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1992023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

随着社交媒体服务的迅速扩散,社交网络上的用户被大量可用的社交媒体所淹没。在本文中,我们研究了社交标签在社交媒体服务中的潜力,以帮助用户检索社交媒体。本文提出了一种基于社会标签的个性化搜索方法,以提高检索精度和检索覆盖率。我们的方法首先确定资源之间和标签之间的相似性。然后,我们构建了两个模型:一个用户-标签关系模型,它反映了某个用户如何分配与给定标签相似的标签;一个标签-项目关系模型,它捕获了某个标签如何被标记到与给定资源相似的资源上。然后,我们根据特定用户的查询将标签无缝地映射到项目上,以便找到与用户需求相关的最具吸引力的媒体内容。实验结果表明,该方法在精度和覆盖范围上都优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Folksonomy-boosted social media search and ranking
With the rapid proliferation of social media services, users on the social Web are overwhelmed by the huge amount of social media available. In this paper, we look into the potential of social tagging in social media services to help users in retrieving social media. By leveraging social tagging, we propose a new personalized search method to enhance not only retrieval accuracy but also retrieval coverage. Our approach first determines the similarities between resources and between tags. Thereafter, we build two models: a user-tag relation model that reflects how a certain user has assigned tags similar to a given tag and a tag-item relation model that captures how a certain tag has been tagged to resources similar to a given resource. We then seamlessly map the tags on the items depending on a particular user's query in order to find the most attractive media content relevant to the user needs. The experimental evaluations have shown the proposed method achieves better search results than state-of-the art algorithms in terms of accuracy and coverage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信