基因组学广义n体问题的异步与大体积同步

Marquita Ellis, A. Buluç, K. Yelick
{"title":"基因组学广义n体问题的异步与大体积同步","authors":"Marquita Ellis, A. Buluç, K. Yelick","doi":"10.1145/3437801.3441580","DOIUrl":null,"url":null,"abstract":"This work examines a data-intensive irregular application from genomics, a long-read to long-read alignment problem, which represents a kind of Generalized N-Body problem, one of the \"seven giants\" of the NRC Big Data motifs [5]. In this problem, computations (genomic alignments) are performed on sparse and data-dependent pairs of inputs, with variable cost computation and variable datum sizes. In particular, there is no inherent locality in the pairwise interactions, unlike simulation-based N-Body problems, and the interaction sparsity depends on particular parameters of the input, which can also affect the quality of the output. We examine two extremes to distributed memory parallelization for this problem, bulk-synchrony and asynchrony, with real workloads. Our bulk-synchronous implementation, uses collective communication in MPI, while our asynchronous implementation uses cross-node RPCs in UPC++. We show that the asynchronous version effectively hides communication costs, with a memory footprint that is typically much lower than the bulk-synchronous version. Our application, while simple enough to be a kind of proxy for genomics or data analytics applications more broadly, is also part of a real application pipeline. It shows good scaling on real input problems, and at the same time, reveals some of the programming and architectural challenges for scaling this type of data-intensive irregular application.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asynchrony versus bulk-synchrony for a generalized N-body problem from genomics\",\"authors\":\"Marquita Ellis, A. Buluç, K. Yelick\",\"doi\":\"10.1145/3437801.3441580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work examines a data-intensive irregular application from genomics, a long-read to long-read alignment problem, which represents a kind of Generalized N-Body problem, one of the \\\"seven giants\\\" of the NRC Big Data motifs [5]. In this problem, computations (genomic alignments) are performed on sparse and data-dependent pairs of inputs, with variable cost computation and variable datum sizes. In particular, there is no inherent locality in the pairwise interactions, unlike simulation-based N-Body problems, and the interaction sparsity depends on particular parameters of the input, which can also affect the quality of the output. We examine two extremes to distributed memory parallelization for this problem, bulk-synchrony and asynchrony, with real workloads. Our bulk-synchronous implementation, uses collective communication in MPI, while our asynchronous implementation uses cross-node RPCs in UPC++. We show that the asynchronous version effectively hides communication costs, with a memory footprint that is typically much lower than the bulk-synchronous version. Our application, while simple enough to be a kind of proxy for genomics or data analytics applications more broadly, is also part of a real application pipeline. It shows good scaling on real input problems, and at the same time, reveals some of the programming and architectural challenges for scaling this type of data-intensive irregular application.\",\"PeriodicalId\":124852,\"journal\":{\"name\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437801.3441580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基因组学的一个数据密集型不规则应用,这是一个长读到长读的对齐问题,它代表了一种广义n体问题,是NRC大数据主题的“七大巨人”之一[5]。在这个问题中,计算(基因组比对)是在稀疏和数据依赖的输入对上进行的,具有可变成本计算和可变数据大小。特别是,与基于仿真的N-Body问题不同,配对交互中没有固有的局部性,并且交互稀疏性取决于输入的特定参数,这也会影响输出的质量。针对这个问题,我们研究了分布式内存并行化的两种极端情况:大容量同步和异步,以及实际工作负载。我们的批量同步实现在MPI中使用集体通信,而我们的异步实现在upc++中使用跨节点rpc。我们展示了异步版本有效地隐藏了通信成本,其内存占用通常比批量同步版本低得多。我们的应用程序虽然足够简单,可以更广泛地作为基因组学或数据分析应用程序的代理,但也是真正的应用程序管道的一部分。它展示了对实际输入问题的良好扩展,同时揭示了扩展这种数据密集型不规则应用程序的一些编程和体系结构挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asynchrony versus bulk-synchrony for a generalized N-body problem from genomics
This work examines a data-intensive irregular application from genomics, a long-read to long-read alignment problem, which represents a kind of Generalized N-Body problem, one of the "seven giants" of the NRC Big Data motifs [5]. In this problem, computations (genomic alignments) are performed on sparse and data-dependent pairs of inputs, with variable cost computation and variable datum sizes. In particular, there is no inherent locality in the pairwise interactions, unlike simulation-based N-Body problems, and the interaction sparsity depends on particular parameters of the input, which can also affect the quality of the output. We examine two extremes to distributed memory parallelization for this problem, bulk-synchrony and asynchrony, with real workloads. Our bulk-synchronous implementation, uses collective communication in MPI, while our asynchronous implementation uses cross-node RPCs in UPC++. We show that the asynchronous version effectively hides communication costs, with a memory footprint that is typically much lower than the bulk-synchronous version. Our application, while simple enough to be a kind of proxy for genomics or data analytics applications more broadly, is also part of a real application pipeline. It shows good scaling on real input problems, and at the same time, reveals some of the programming and architectural challenges for scaling this type of data-intensive irregular application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信