TeutongNet:用于改进森林火灾探测的微调深度学习模型

G. M. Idroes, A. Maulana, R. Suhendra, A. Lala, T. Karma, Fitranto Kusumo, Yuni Tri Hewindati, T. R. Noviandy
{"title":"TeutongNet:用于改进森林火灾探测的微调深度学习模型","authors":"G. M. Idroes, A. Maulana, R. Suhendra, A. Lala, T. Karma, Fitranto Kusumo, Yuni Tri Hewindati, T. R. Noviandy","doi":"10.60084/ljes.v1i1.42","DOIUrl":null,"url":null,"abstract":"Forest fires have emerged as a significant threat to the environment, wildlife, and human lives, necessitating the development of effective early detection systems for firefighting and mitigation efforts. In this study, we introduce TeutongNet, a modified ResNet50V2 model designed to detect forest fires accurately. The model is trained on a curated dataset and evaluated using various metrics. Results show that TeutongNet achieves high accuracy (98.68%) with low false positive and false negative rates. The model's performance is further supported by the ROC curve analysis, which indicates a high degree of accuracy in classifying fire and non-fire images. TeutongNet demonstrates its effectiveness in reliable forest fire detection, providing valuable insights for improved fire management strategies.","PeriodicalId":279362,"journal":{"name":"Leuser Journal of Environmental Studies","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"TeutongNet: A Fine-Tuned Deep Learning Model for Improved Forest Fire Detection\",\"authors\":\"G. M. Idroes, A. Maulana, R. Suhendra, A. Lala, T. Karma, Fitranto Kusumo, Yuni Tri Hewindati, T. R. Noviandy\",\"doi\":\"10.60084/ljes.v1i1.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest fires have emerged as a significant threat to the environment, wildlife, and human lives, necessitating the development of effective early detection systems for firefighting and mitigation efforts. In this study, we introduce TeutongNet, a modified ResNet50V2 model designed to detect forest fires accurately. The model is trained on a curated dataset and evaluated using various metrics. Results show that TeutongNet achieves high accuracy (98.68%) with low false positive and false negative rates. The model's performance is further supported by the ROC curve analysis, which indicates a high degree of accuracy in classifying fire and non-fire images. TeutongNet demonstrates its effectiveness in reliable forest fire detection, providing valuable insights for improved fire management strategies.\",\"PeriodicalId\":279362,\"journal\":{\"name\":\"Leuser Journal of Environmental Studies\",\"volume\":\"284 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leuser Journal of Environmental Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.60084/ljes.v1i1.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leuser Journal of Environmental Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60084/ljes.v1i1.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

森林火灾已经成为对环境、野生动物和人类生命的重大威胁,需要开发有效的早期检测系统来进行消防和减灾工作。在本研究中,我们引入了一种改进的ResNet50V2模型TeutongNet,用于准确检测森林火灾。该模型在一个精心策划的数据集上进行训练,并使用各种指标进行评估。结果表明,条通网的准确率高达98.68%,假阳性和假阴性率均较低。ROC曲线分析进一步支持了该模型的性能,表明该模型在火灾和非火灾图像分类方面具有很高的准确性。TeutongNet展示了其在可靠的森林火灾探测方面的有效性,为改进火灾管理策略提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TeutongNet: A Fine-Tuned Deep Learning Model for Improved Forest Fire Detection
Forest fires have emerged as a significant threat to the environment, wildlife, and human lives, necessitating the development of effective early detection systems for firefighting and mitigation efforts. In this study, we introduce TeutongNet, a modified ResNet50V2 model designed to detect forest fires accurately. The model is trained on a curated dataset and evaluated using various metrics. Results show that TeutongNet achieves high accuracy (98.68%) with low false positive and false negative rates. The model's performance is further supported by the ROC curve analysis, which indicates a high degree of accuracy in classifying fire and non-fire images. TeutongNet demonstrates its effectiveness in reliable forest fire detection, providing valuable insights for improved fire management strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信