基于dsp的增量直方图计算和粒子滤波跟踪算法及其实现

Xia Xuan, Liu Huaping, Xu Weiming, Sun Fuchun
{"title":"基于dsp的增量直方图计算和粒子滤波跟踪算法及其实现","authors":"Xia Xuan, Liu Huaping, Xu Weiming, Sun Fuchun","doi":"10.1109/IVSURV.2011.6157026","DOIUrl":null,"url":null,"abstract":"Implementation of particle filter visual tracking on DSP platform will suffer from calculation bottleneck. To realize the real-time tracking, this paper uses the incremental histogram calculation algorithm to construct the histogram of color and edge orientation, integrates the histograms for the observation model and optimizes the target tracking algorithm on the DSP. The experiment proves that the algorithm is fast and the robustness of the system.","PeriodicalId":141829,"journal":{"name":"2011 Third Chinese Conference on Intelligent Visual Surveillance","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSP-based incremental histogram calculation and particle filter tracking algorithm and its implementation\",\"authors\":\"Xia Xuan, Liu Huaping, Xu Weiming, Sun Fuchun\",\"doi\":\"10.1109/IVSURV.2011.6157026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementation of particle filter visual tracking on DSP platform will suffer from calculation bottleneck. To realize the real-time tracking, this paper uses the incremental histogram calculation algorithm to construct the histogram of color and edge orientation, integrates the histograms for the observation model and optimizes the target tracking algorithm on the DSP. The experiment proves that the algorithm is fast and the robustness of the system.\",\"PeriodicalId\":141829,\"journal\":{\"name\":\"2011 Third Chinese Conference on Intelligent Visual Surveillance\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Third Chinese Conference on Intelligent Visual Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVSURV.2011.6157026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third Chinese Conference on Intelligent Visual Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVSURV.2011.6157026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在DSP平台上实现粒子滤波视觉跟踪存在计算瓶颈。为了实现实时跟踪,本文采用增量直方图计算算法构建颜色直方图和边缘方向直方图,对观测模型的直方图进行整合,并在DSP上优化目标跟踪算法。实验证明了该算法的快速性和系统的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DSP-based incremental histogram calculation and particle filter tracking algorithm and its implementation
Implementation of particle filter visual tracking on DSP platform will suffer from calculation bottleneck. To realize the real-time tracking, this paper uses the incremental histogram calculation algorithm to construct the histogram of color and edge orientation, integrates the histograms for the observation model and optimizes the target tracking algorithm on the DSP. The experiment proves that the algorithm is fast and the robustness of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信