基于判别分析的二次分类器多属性数据分类:(案例研究:生育数据集)

Reina Setiawan
{"title":"基于判别分析的二次分类器多属性数据分类:(案例研究:生育数据集)","authors":"Reina Setiawan","doi":"10.1109/ICIMTECH.2017.8273521","DOIUrl":null,"url":null,"abstract":"Classification is a process to group data, based on characteristics into related class. There are many methods in classification and the appropriate method is chosen based on nature of data. This paper focuses on classification of multiple attributes data using discriminant analysis. The research uses Fertility Data Set from UCI Machine Learning Repository with ten attributes of data. The experiment uses several methods of classification to find out the best result of performance. The result shows Quadratic Classifier from discriminant analysis has the best performance of classification around ninety-eight percent with the lowest errors. In summary, the appropriate method produces a good performance of classification and the quadratic classifier from discriminant analysis shows the best performance in multiple attributes data classification.","PeriodicalId":439941,"journal":{"name":"2017 International Conference on Information Management and Technology (ICIMTech)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quadratic classifier from discriminant analysis for classification of multiple attributes data: (Case study: Fertility data set)\",\"authors\":\"Reina Setiawan\",\"doi\":\"10.1109/ICIMTECH.2017.8273521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is a process to group data, based on characteristics into related class. There are many methods in classification and the appropriate method is chosen based on nature of data. This paper focuses on classification of multiple attributes data using discriminant analysis. The research uses Fertility Data Set from UCI Machine Learning Repository with ten attributes of data. The experiment uses several methods of classification to find out the best result of performance. The result shows Quadratic Classifier from discriminant analysis has the best performance of classification around ninety-eight percent with the lowest errors. In summary, the appropriate method produces a good performance of classification and the quadratic classifier from discriminant analysis shows the best performance in multiple attributes data classification.\",\"PeriodicalId\":439941,\"journal\":{\"name\":\"2017 International Conference on Information Management and Technology (ICIMTech)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Information Management and Technology (ICIMTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMTECH.2017.8273521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Information Management and Technology (ICIMTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMTECH.2017.8273521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

分类是将数据根据特征划分为相关类的过程。分类方法有很多,根据数据的性质选择合适的方法。本文主要研究多属性数据的判别分析分类问题。该研究使用UCI机器学习存储库中的生育数据集,其中包含十个数据属性。实验采用了几种分类方法来寻找最佳的性能结果。结果表明,基于判别分析的二次分类器分类准确率最高,达到98%左右。综上所述,适当的方法可以产生良好的分类性能,其中判别分析的二次分类器在多属性数据分类中表现出最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic classifier from discriminant analysis for classification of multiple attributes data: (Case study: Fertility data set)
Classification is a process to group data, based on characteristics into related class. There are many methods in classification and the appropriate method is chosen based on nature of data. This paper focuses on classification of multiple attributes data using discriminant analysis. The research uses Fertility Data Set from UCI Machine Learning Repository with ten attributes of data. The experiment uses several methods of classification to find out the best result of performance. The result shows Quadratic Classifier from discriminant analysis has the best performance of classification around ninety-eight percent with the lowest errors. In summary, the appropriate method produces a good performance of classification and the quadratic classifier from discriminant analysis shows the best performance in multiple attributes data classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信