基于节段网的脑核磁共振图像胼胝体分割

Anjali Chandra, Shrish Verma, A. S. Raghuvanshi, N. Bodhey, N. Londhe, K. Subham
{"title":"基于节段网的脑核磁共振图像胼胝体分割","authors":"Anjali Chandra, Shrish Verma, A. S. Raghuvanshi, N. Bodhey, N. Londhe, K. Subham","doi":"10.1109/ICCCIS48478.2019.8974559","DOIUrl":null,"url":null,"abstract":"Corpus callosum is the most significant human brain structures. The majority of neurological disorder directly or indirectly reflect on Corpus Callosum morphological characteristics. The mid-sagittal view of the Tl weighted brain MRI completely portray corpus callosum anatomical structure. The segmentation of corpus callosum from brain MRI is very challenging task due to low contrast in surrounding organ and tissues. We propose a novel Corpus Callosum segmentation method using semantic pixel-wise segmentation termed as SegNet, a practical deep convolutional neural network architecture. The applied architecture comprises of two networks namely encoder and decoder with pixel-specific classification layer. The proposed model’s encoder network comprises of series of convolution, batch normalization and max-pool layers. The function of decoder network is to map the feature maps of the low-resolution encoder to the full input resolution featuremaps for the classification of pixels. The segmentation output can be used for better extraction of features and classification of diseases in medical diagnosis.","PeriodicalId":436154,"journal":{"name":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SegNet-based Corpus Callosum segmentation for brain Magnetic Resonance Images (MRI)\",\"authors\":\"Anjali Chandra, Shrish Verma, A. S. Raghuvanshi, N. Bodhey, N. Londhe, K. Subham\",\"doi\":\"10.1109/ICCCIS48478.2019.8974559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corpus callosum is the most significant human brain structures. The majority of neurological disorder directly or indirectly reflect on Corpus Callosum morphological characteristics. The mid-sagittal view of the Tl weighted brain MRI completely portray corpus callosum anatomical structure. The segmentation of corpus callosum from brain MRI is very challenging task due to low contrast in surrounding organ and tissues. We propose a novel Corpus Callosum segmentation method using semantic pixel-wise segmentation termed as SegNet, a practical deep convolutional neural network architecture. The applied architecture comprises of two networks namely encoder and decoder with pixel-specific classification layer. The proposed model’s encoder network comprises of series of convolution, batch normalization and max-pool layers. The function of decoder network is to map the feature maps of the low-resolution encoder to the full input resolution featuremaps for the classification of pixels. The segmentation output can be used for better extraction of features and classification of diseases in medical diagnosis.\",\"PeriodicalId\":436154,\"journal\":{\"name\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCIS48478.2019.8974559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS48478.2019.8974559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

胼胝体是人类最重要的大脑结构。大多数神经系统疾病直接或间接反映在胼胝体的形态特征上。Tl加权脑MRI正中矢状面完全描绘了胼胝体的解剖结构。由于大脑周围的器官和组织对比度较低,从MRI上分割胼胝体是一项非常具有挑战性的任务。我们提出了一种新的语料库分割方法,使用语义像素分割,称为SegNet,一种实用的深度卷积神经网络架构。应用的体系结构包括两个网络,即具有特定像素分类层的编码器和解码器。该模型的编码器网络由一系列卷积层、批归一化层和最大池层组成。解码器网络的功能是将低分辨率编码器的特征映射到全输入分辨率的特征映射,用于像素的分类。在医学诊断中,分割输出可以用于更好的特征提取和疾病分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SegNet-based Corpus Callosum segmentation for brain Magnetic Resonance Images (MRI)
Corpus callosum is the most significant human brain structures. The majority of neurological disorder directly or indirectly reflect on Corpus Callosum morphological characteristics. The mid-sagittal view of the Tl weighted brain MRI completely portray corpus callosum anatomical structure. The segmentation of corpus callosum from brain MRI is very challenging task due to low contrast in surrounding organ and tissues. We propose a novel Corpus Callosum segmentation method using semantic pixel-wise segmentation termed as SegNet, a practical deep convolutional neural network architecture. The applied architecture comprises of two networks namely encoder and decoder with pixel-specific classification layer. The proposed model’s encoder network comprises of series of convolution, batch normalization and max-pool layers. The function of decoder network is to map the feature maps of the low-resolution encoder to the full input resolution featuremaps for the classification of pixels. The segmentation output can be used for better extraction of features and classification of diseases in medical diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信