压力测高对静止卫星监视精度影响的模拟

S.C. Mohleji, C. Shively
{"title":"压力测高对静止卫星监视精度影响的模拟","authors":"S.C. Mohleji, C. Shively","doi":"10.1109/DASC.1990.111259","DOIUrl":null,"url":null,"abstract":"In the ranging and processing mobile-satellite (RAPSAT) system, aircraft position is estimated from the aircraft altitude in conjunction with the aircraft range (signal transit time) to two surveillance satellites. Due to large variations in atmospheric conditions, altimeter readings deviate significantly from the true geometric altitudes. As a result, the aircraft position estimation accuracy of satellite surveillance systems, such as RAPSAT, may be degraded. The authors model the spatial and temporal deviations between pressure altitudes and true geometric altitudes, and the results are applied to characterize the position estimation error of the RAPSAT system. The results show that the geometric altitude deviated widely from the pressure altitude at different latitudes and altitudes, but the altitude difference remained constant at the same latitudes and altitudes. As a result, these altitude deviations can be modeled as a constant correction over the same latitudes and altitudes. These altitude deviations were observed to be reasonably stable over several days. With the adjustment of altimeter readings, the errors in the estimation of geometric altitudes, including instrumentation errors, were computed to be less than 310 ft (one standard deviation) across conterminous US. The corresponding root mean square error in aircraft position (2-D) estimated by the RAPSAT system varied from 135 ft to 297 ft for six selected locations representing the cross section of the country.<<ETX>>","PeriodicalId":141205,"journal":{"name":"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the effect of pressure altimetry on geostationary satellite surveillance accuracy\",\"authors\":\"S.C. Mohleji, C. Shively\",\"doi\":\"10.1109/DASC.1990.111259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the ranging and processing mobile-satellite (RAPSAT) system, aircraft position is estimated from the aircraft altitude in conjunction with the aircraft range (signal transit time) to two surveillance satellites. Due to large variations in atmospheric conditions, altimeter readings deviate significantly from the true geometric altitudes. As a result, the aircraft position estimation accuracy of satellite surveillance systems, such as RAPSAT, may be degraded. The authors model the spatial and temporal deviations between pressure altitudes and true geometric altitudes, and the results are applied to characterize the position estimation error of the RAPSAT system. The results show that the geometric altitude deviated widely from the pressure altitude at different latitudes and altitudes, but the altitude difference remained constant at the same latitudes and altitudes. As a result, these altitude deviations can be modeled as a constant correction over the same latitudes and altitudes. These altitude deviations were observed to be reasonably stable over several days. With the adjustment of altimeter readings, the errors in the estimation of geometric altitudes, including instrumentation errors, were computed to be less than 310 ft (one standard deviation) across conterminous US. The corresponding root mean square error in aircraft position (2-D) estimated by the RAPSAT system varied from 135 ft to 297 ft for six selected locations representing the cross section of the country.<<ETX>>\",\"PeriodicalId\":141205,\"journal\":{\"name\":\"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems\",\"volume\":\"2011 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.1990.111259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.1990.111259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在测距和处理移动卫星(RAPSAT)系统中,从飞机高度结合飞机距离(信号传输时间)估计到两颗监视卫星的飞机位置。由于大气条件有很大的变化,高度计的读数与真实几何高度有很大的偏差。因此,卫星监视系统(如RAPSAT)的飞机位置估计精度可能会降低。建立了压力高度与真实几何高度的时空偏差模型,并应用该模型对RAPSAT系统的位置估计误差进行了表征。结果表明:在不同的纬度和海拔高度,几何海拔与气压海拔偏差较大,但在相同的纬度和海拔高度,几何海拔与气压海拔的差异保持不变。因此,这些高度偏差可以模拟为相同纬度和高度上的恒定修正。观察到这些高度偏差在几天内相当稳定。通过对高度计读数的调整,计算出的几何高度估计误差(包括仪器误差)在连续的美国范围内小于310英尺(一个标准差)。RAPSAT系统估计的飞机位置(2-D)的相应均方根误差从135英尺到297英尺不等,代表该国横截面的六个选定位置
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the effect of pressure altimetry on geostationary satellite surveillance accuracy
In the ranging and processing mobile-satellite (RAPSAT) system, aircraft position is estimated from the aircraft altitude in conjunction with the aircraft range (signal transit time) to two surveillance satellites. Due to large variations in atmospheric conditions, altimeter readings deviate significantly from the true geometric altitudes. As a result, the aircraft position estimation accuracy of satellite surveillance systems, such as RAPSAT, may be degraded. The authors model the spatial and temporal deviations between pressure altitudes and true geometric altitudes, and the results are applied to characterize the position estimation error of the RAPSAT system. The results show that the geometric altitude deviated widely from the pressure altitude at different latitudes and altitudes, but the altitude difference remained constant at the same latitudes and altitudes. As a result, these altitude deviations can be modeled as a constant correction over the same latitudes and altitudes. These altitude deviations were observed to be reasonably stable over several days. With the adjustment of altimeter readings, the errors in the estimation of geometric altitudes, including instrumentation errors, were computed to be less than 310 ft (one standard deviation) across conterminous US. The corresponding root mean square error in aircraft position (2-D) estimated by the RAPSAT system varied from 135 ft to 297 ft for six selected locations representing the cross section of the country.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信