{"title":"利用Shapley值优化神经网络拓扑","authors":"F. Leon","doi":"10.1109/ICSTCC.2014.6982527","DOIUrl":null,"url":null,"abstract":"The paper proposes a destructive method for optimizing the topology of neural networks based on the Shapley value, a game theoretic solution concept which estimates the contribution of each network element to the overall performance. More network elements can be simultaneously pruned, which can lead to shorter execution times and better results. An evolutionary hill climbing procedure is used to fine-tune the network after each simplification.","PeriodicalId":309866,"journal":{"name":"2014 18th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimizing neural network topology using Shapley value\",\"authors\":\"F. Leon\",\"doi\":\"10.1109/ICSTCC.2014.6982527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a destructive method for optimizing the topology of neural networks based on the Shapley value, a game theoretic solution concept which estimates the contribution of each network element to the overall performance. More network elements can be simultaneously pruned, which can lead to shorter execution times and better results. An evolutionary hill climbing procedure is used to fine-tune the network after each simplification.\",\"PeriodicalId\":309866,\"journal\":{\"name\":\"2014 18th International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 18th International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC.2014.6982527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 18th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2014.6982527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing neural network topology using Shapley value
The paper proposes a destructive method for optimizing the topology of neural networks based on the Shapley value, a game theoretic solution concept which estimates the contribution of each network element to the overall performance. More network elements can be simultaneously pruned, which can lead to shorter execution times and better results. An evolutionary hill climbing procedure is used to fine-tune the network after each simplification.