软件故障预测的正弦余弦算法

Tamanna Sharma, O. Sangwan
{"title":"软件故障预测的正弦余弦算法","authors":"Tamanna Sharma, O. Sangwan","doi":"10.1109/ICSME52107.2021.00084","DOIUrl":null,"url":null,"abstract":"For developing an efficient and quality Software Fault Prediction (SFP) model, redundant and irrelevant features need to be removed. This task can be achieved, to a significant extent, with Feature Selection (FS) methods. Many empirical studies have been proposed on FS methods (Filter and Wrapper-based) and have shown effective results in reducing the problem of high dimensionality in metrics-based SFP models. This study evaluates the performance of novel wrapper-based Sine Cosine Algorithm (SCA) on five datasets of the AEEEM repository and compares the results with two metaheuristic techniques Genetic Algorithm (GA) and Cuckoo Search algorithm (CSA) on four different Machine Learning (ML) classifiers - Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes (NB), and K-Nearest Neighbor (KNN). We found that the application of FS methods (SCA, GA & CSA) has improved the classifier performance. SCA has proved to be more efficient than GA and CSA in terms of lesser convergence time with the smallest subset of selected features and equivalent performance.","PeriodicalId":205629,"journal":{"name":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sine-Cosine Algorithm for Software Fault Prediction\",\"authors\":\"Tamanna Sharma, O. Sangwan\",\"doi\":\"10.1109/ICSME52107.2021.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For developing an efficient and quality Software Fault Prediction (SFP) model, redundant and irrelevant features need to be removed. This task can be achieved, to a significant extent, with Feature Selection (FS) methods. Many empirical studies have been proposed on FS methods (Filter and Wrapper-based) and have shown effective results in reducing the problem of high dimensionality in metrics-based SFP models. This study evaluates the performance of novel wrapper-based Sine Cosine Algorithm (SCA) on five datasets of the AEEEM repository and compares the results with two metaheuristic techniques Genetic Algorithm (GA) and Cuckoo Search algorithm (CSA) on four different Machine Learning (ML) classifiers - Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes (NB), and K-Nearest Neighbor (KNN). We found that the application of FS methods (SCA, GA & CSA) has improved the classifier performance. SCA has proved to be more efficient than GA and CSA in terms of lesser convergence time with the smallest subset of selected features and equivalent performance.\",\"PeriodicalId\":205629,\"journal\":{\"name\":\"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSME52107.2021.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME52107.2021.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了开发高效、高质量的软件故障预测(SFP)模型,需要去除冗余和不相关的特征。在很大程度上,Feature Selection (FS)方法可以完成这项任务。许多关于FS方法(基于Filter和wrapper的方法)的实证研究已经提出,并且在减少基于度量的SFP模型中的高维问题方面显示出有效的结果。本研究评估了新型基于包装的正弦余弦算法(SCA)在AEEEM存储库的5个数据集上的性能,并将结果与遗传算法(GA)和布谷鸟搜索算法(CSA)在4种不同的机器学习(ML)分类器——随机森林(RF)、支持向量机(SVM)、Naïve贝叶斯(NB)和k -近邻(KNN)上的两种元启发式技术进行了比较。我们发现FS方法(SCA, GA和CSA)的应用提高了分类器的性能。SCA已被证明比GA和CSA更有效,因为它的收敛时间更短,所选特征的子集最小,性能也相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sine-Cosine Algorithm for Software Fault Prediction
For developing an efficient and quality Software Fault Prediction (SFP) model, redundant and irrelevant features need to be removed. This task can be achieved, to a significant extent, with Feature Selection (FS) methods. Many empirical studies have been proposed on FS methods (Filter and Wrapper-based) and have shown effective results in reducing the problem of high dimensionality in metrics-based SFP models. This study evaluates the performance of novel wrapper-based Sine Cosine Algorithm (SCA) on five datasets of the AEEEM repository and compares the results with two metaheuristic techniques Genetic Algorithm (GA) and Cuckoo Search algorithm (CSA) on four different Machine Learning (ML) classifiers - Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes (NB), and K-Nearest Neighbor (KNN). We found that the application of FS methods (SCA, GA & CSA) has improved the classifier performance. SCA has proved to be more efficient than GA and CSA in terms of lesser convergence time with the smallest subset of selected features and equivalent performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信