风速概率密度估算参数统计模型的评价

Maisam Wahbah, Omar Alhussein, T. El-Fouly, B. Zahawi, S. Muhaidat
{"title":"风速概率密度估算参数统计模型的评价","authors":"Maisam Wahbah, Omar Alhussein, T. El-Fouly, B. Zahawi, S. Muhaidat","doi":"10.1109/EPEC.2018.8598283","DOIUrl":null,"url":null,"abstract":"An accurate statistical estimation of wind speed probability density at a given site is crucial when making power network planning decisions involving wind generation resources. The use of parametric probability density functions, such as the Rayleigh, Weibull and Gaussian distributions, can be problematic as it can lead to model mis-specification at a given site. In this paper, the use of the Gaussian Mixture Model (GMM) to estimate wind speed variability is investigated and compared with the above three popular parametric models using wind speed data for six sites in northwest Europe. Results show that the GMM produces the lowest error values with the highest percentage improvements, and is the only model that consistently fails to reject the null hypothesis when conducting the K-S goodness-of-fit test.","PeriodicalId":265297,"journal":{"name":"2018 IEEE Electrical Power and Energy Conference (EPEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluation of Parametric Statistical Models for Wind Speed Probability Density Estimation\",\"authors\":\"Maisam Wahbah, Omar Alhussein, T. El-Fouly, B. Zahawi, S. Muhaidat\",\"doi\":\"10.1109/EPEC.2018.8598283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate statistical estimation of wind speed probability density at a given site is crucial when making power network planning decisions involving wind generation resources. The use of parametric probability density functions, such as the Rayleigh, Weibull and Gaussian distributions, can be problematic as it can lead to model mis-specification at a given site. In this paper, the use of the Gaussian Mixture Model (GMM) to estimate wind speed variability is investigated and compared with the above three popular parametric models using wind speed data for six sites in northwest Europe. Results show that the GMM produces the lowest error values with the highest percentage improvements, and is the only model that consistently fails to reject the null hypothesis when conducting the K-S goodness-of-fit test.\",\"PeriodicalId\":265297,\"journal\":{\"name\":\"2018 IEEE Electrical Power and Energy Conference (EPEC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Electrical Power and Energy Conference (EPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEC.2018.8598283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2018.8598283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在制定涉及风力发电资源的电网规划决策时,对给定地点风速概率密度的准确统计估计是至关重要的。参数概率密度函数(如瑞利分布、威布尔分布和高斯分布)的使用可能存在问题,因为它可能导致给定地点的模型规格错误。本文利用欧洲西北部6个站点的风速数据,研究了高斯混合模型(GMM)对风速变率的估计,并与上述3种流行的参数模型进行了比较。结果表明,GMM产生的误差值最低,改进百分比最高,并且是唯一在进行K-S拟合优度检验时始终未能拒绝原假设的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Parametric Statistical Models for Wind Speed Probability Density Estimation
An accurate statistical estimation of wind speed probability density at a given site is crucial when making power network planning decisions involving wind generation resources. The use of parametric probability density functions, such as the Rayleigh, Weibull and Gaussian distributions, can be problematic as it can lead to model mis-specification at a given site. In this paper, the use of the Gaussian Mixture Model (GMM) to estimate wind speed variability is investigated and compared with the above three popular parametric models using wind speed data for six sites in northwest Europe. Results show that the GMM produces the lowest error values with the highest percentage improvements, and is the only model that consistently fails to reject the null hypothesis when conducting the K-S goodness-of-fit test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信