Marco Zimmerling, F. Ferrari, L. Mottola, L. Thiele
{"title":"基于同步分组传输的低功耗无线协议建模研究","authors":"Marco Zimmerling, F. Ferrari, L. Mottola, L. Thiele","doi":"10.1109/MASCOTS.2013.76","DOIUrl":null,"url":null,"abstract":"Mathematical models play a pivotal role in understanding and designing advanced low-power wireless systems. However, the distributed and uncoordinated operation of traditional multi-hop low-power wireless protocols greatly complicates their accurate modeling. This is mainly because these protocols build and maintain substantial network state to cope with the dynamics of low-power wireless links. Recent protocols depart from this design by leveraging synchronous transmissions (ST), whereby multiple nodes simultaneously transmit towards the same receiver, as opposed to pair wise link-based transmissions (LT). ST improve the one-hop packet reliability to an extent that efficient multi-hop protocols with little network state are feasible. This paper studies whether ST also enable simple yet accurate modeling of these protocols. Our contribution to this end is two-fold. First, we show, through experiments on a 139-node test bed, that characterizing packet receptions and losses as a sequence of independent and identically distributed (i.i.d.) Bernoulli trials-a common assumption in protocol modeling but often illegitimate for LT-is largely valid for ST. We then show how this finding simplifies the modeling of a recent ST-based protocol, by deriving (i) sufficient conditions for probabilistic guarantees on the end-to-end packet reliability, and (ii) a Markovian model to estimate the long-term energy consumption. Validation using test bed experiments confirms that our simple models are also highly accurate, for example, the model error in energy against real measurements is 0.25%, a figure never reported before in the related literature.","PeriodicalId":385538,"journal":{"name":"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"On Modeling Low-Power Wireless Protocols Based on Synchronous Packet Transmissions\",\"authors\":\"Marco Zimmerling, F. Ferrari, L. Mottola, L. Thiele\",\"doi\":\"10.1109/MASCOTS.2013.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical models play a pivotal role in understanding and designing advanced low-power wireless systems. However, the distributed and uncoordinated operation of traditional multi-hop low-power wireless protocols greatly complicates their accurate modeling. This is mainly because these protocols build and maintain substantial network state to cope with the dynamics of low-power wireless links. Recent protocols depart from this design by leveraging synchronous transmissions (ST), whereby multiple nodes simultaneously transmit towards the same receiver, as opposed to pair wise link-based transmissions (LT). ST improve the one-hop packet reliability to an extent that efficient multi-hop protocols with little network state are feasible. This paper studies whether ST also enable simple yet accurate modeling of these protocols. Our contribution to this end is two-fold. First, we show, through experiments on a 139-node test bed, that characterizing packet receptions and losses as a sequence of independent and identically distributed (i.i.d.) Bernoulli trials-a common assumption in protocol modeling but often illegitimate for LT-is largely valid for ST. We then show how this finding simplifies the modeling of a recent ST-based protocol, by deriving (i) sufficient conditions for probabilistic guarantees on the end-to-end packet reliability, and (ii) a Markovian model to estimate the long-term energy consumption. Validation using test bed experiments confirms that our simple models are also highly accurate, for example, the model error in energy against real measurements is 0.25%, a figure never reported before in the related literature.\",\"PeriodicalId\":385538,\"journal\":{\"name\":\"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOTS.2013.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS.2013.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Modeling Low-Power Wireless Protocols Based on Synchronous Packet Transmissions
Mathematical models play a pivotal role in understanding and designing advanced low-power wireless systems. However, the distributed and uncoordinated operation of traditional multi-hop low-power wireless protocols greatly complicates their accurate modeling. This is mainly because these protocols build and maintain substantial network state to cope with the dynamics of low-power wireless links. Recent protocols depart from this design by leveraging synchronous transmissions (ST), whereby multiple nodes simultaneously transmit towards the same receiver, as opposed to pair wise link-based transmissions (LT). ST improve the one-hop packet reliability to an extent that efficient multi-hop protocols with little network state are feasible. This paper studies whether ST also enable simple yet accurate modeling of these protocols. Our contribution to this end is two-fold. First, we show, through experiments on a 139-node test bed, that characterizing packet receptions and losses as a sequence of independent and identically distributed (i.i.d.) Bernoulli trials-a common assumption in protocol modeling but often illegitimate for LT-is largely valid for ST. We then show how this finding simplifies the modeling of a recent ST-based protocol, by deriving (i) sufficient conditions for probabilistic guarantees on the end-to-end packet reliability, and (ii) a Markovian model to estimate the long-term energy consumption. Validation using test bed experiments confirms that our simple models are also highly accurate, for example, the model error in energy against real measurements is 0.25%, a figure never reported before in the related literature.