再生采样自混频接收机:低复杂度相位解调的新概念

C. Carlowitz, A. Esswein, R. Weigel, M. Vossiek
{"title":"再生采样自混频接收机:低复杂度相位解调的新概念","authors":"C. Carlowitz, A. Esswein, R. Weigel, M. Vossiek","doi":"10.1109/MWSYM.2013.6697569","DOIUrl":null,"url":null,"abstract":"In this paper, a novel low complexity receiver concept for high-order differential phase demodulation is introduced for the first time. With a first hardware demonstrator, a high data rate of 300 Mbit/s is achieved without requiring a synthesizer for downconversion. A phase sensitive regenerative sampling approach is employed that integrates both low noise amplifier and automatic gain control using a free running switched injection-locked oscillator with no need for stabilization by a phase locked loop. Differential phase detection is achieved by quadrature self-mixing the regenerated signal with one path delayed by the symbol period. This approach is particularly attractive in combination with the switched injection-locked oscillator due to its constant high output power that allows for matching the mixer's best operating point. The proposed concept is demonstrated at 5.5 GHz with 8th order differential phase shift keying and a symbol rate of 100 MBaud/s. A short range data rate of 300 Mbit/s is achieved at a bit error rate below 1e-3.","PeriodicalId":128968,"journal":{"name":"2013 IEEE MTT-S International Microwave Symposium Digest (MTT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Regenerative sampling self-mixing receiver: A novel concept for low complexity phase demodulation\",\"authors\":\"C. Carlowitz, A. Esswein, R. Weigel, M. Vossiek\",\"doi\":\"10.1109/MWSYM.2013.6697569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel low complexity receiver concept for high-order differential phase demodulation is introduced for the first time. With a first hardware demonstrator, a high data rate of 300 Mbit/s is achieved without requiring a synthesizer for downconversion. A phase sensitive regenerative sampling approach is employed that integrates both low noise amplifier and automatic gain control using a free running switched injection-locked oscillator with no need for stabilization by a phase locked loop. Differential phase detection is achieved by quadrature self-mixing the regenerated signal with one path delayed by the symbol period. This approach is particularly attractive in combination with the switched injection-locked oscillator due to its constant high output power that allows for matching the mixer's best operating point. The proposed concept is demonstrated at 5.5 GHz with 8th order differential phase shift keying and a symbol rate of 100 MBaud/s. A short range data rate of 300 Mbit/s is achieved at a bit error rate below 1e-3.\",\"PeriodicalId\":128968,\"journal\":{\"name\":\"2013 IEEE MTT-S International Microwave Symposium Digest (MTT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE MTT-S International Microwave Symposium Digest (MTT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2013.6697569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Symposium Digest (MTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2013.6697569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文首次提出了一种用于高阶差分相位解调的新型低复杂度接收机概念。在第一个硬件演示中,实现了300 Mbit/s的高数据速率,而无需合成器进行下变频。采用了一种相敏再生采样方法,该方法结合了低噪声放大器和自动增益控制,使用自由运行的开关注入锁定振荡器,无需锁相环稳定。差分相位检测是通过对再生信号进行正交自混频实现的,其中一条路径被符号周期延迟。这种方法与开关注入锁定振荡器结合起来特别有吸引力,因为它具有恒定的高输出功率,可以匹配混频器的最佳工作点。提出的概念在5.5 GHz下进行了8阶差分相移键控,符号速率为100 MBaud/s。短距离数据传输速率可达300mbit /s,误码率低于1e-3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regenerative sampling self-mixing receiver: A novel concept for low complexity phase demodulation
In this paper, a novel low complexity receiver concept for high-order differential phase demodulation is introduced for the first time. With a first hardware demonstrator, a high data rate of 300 Mbit/s is achieved without requiring a synthesizer for downconversion. A phase sensitive regenerative sampling approach is employed that integrates both low noise amplifier and automatic gain control using a free running switched injection-locked oscillator with no need for stabilization by a phase locked loop. Differential phase detection is achieved by quadrature self-mixing the regenerated signal with one path delayed by the symbol period. This approach is particularly attractive in combination with the switched injection-locked oscillator due to its constant high output power that allows for matching the mixer's best operating point. The proposed concept is demonstrated at 5.5 GHz with 8th order differential phase shift keying and a symbol rate of 100 MBaud/s. A short range data rate of 300 Mbit/s is achieved at a bit error rate below 1e-3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信