{"title":"室内定位误差建模与估计融合","authors":"Weipeng Zhuo, Bo Zhang, S. Chan, E. Chang","doi":"10.1109/ICME.2012.106","DOIUrl":null,"url":null,"abstract":"There has been much interest in offering multimedia location-based service (LBS) to indoor users (e.g., sending video/audio streams according to user locations). Offering good LBS largely depends on accurate indoor localization of mobile stations (MSs). To achieve that, in this paper we first model and analyze the error characteristics of important indoor localization schemes, using Radio Frequency Identification (RFID) and Wi-Fi. Our models are simple to use, capturing important system parameters and measurement noises, and quantifying how they affect the accuracies of the localization. Given that there have been many indoor localization techniques deployed, an MS may receive simultaneously multiple co-existing estimations on its location. Equipped with the understanding of location errors, we then investigate how to optimally combine, or fuse, all the co-existing estimations of an MS's location. We present computationally-efficient closed-form expressions to fuse the outputs of the estimators. Simulation and experimental results show that our fusion technique achieves higher location accuracy in spite of location errors in the estimators.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Error Modeling and Estimation Fusion for Indoor Localization\",\"authors\":\"Weipeng Zhuo, Bo Zhang, S. Chan, E. Chang\",\"doi\":\"10.1109/ICME.2012.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been much interest in offering multimedia location-based service (LBS) to indoor users (e.g., sending video/audio streams according to user locations). Offering good LBS largely depends on accurate indoor localization of mobile stations (MSs). To achieve that, in this paper we first model and analyze the error characteristics of important indoor localization schemes, using Radio Frequency Identification (RFID) and Wi-Fi. Our models are simple to use, capturing important system parameters and measurement noises, and quantifying how they affect the accuracies of the localization. Given that there have been many indoor localization techniques deployed, an MS may receive simultaneously multiple co-existing estimations on its location. Equipped with the understanding of location errors, we then investigate how to optimally combine, or fuse, all the co-existing estimations of an MS's location. We present computationally-efficient closed-form expressions to fuse the outputs of the estimators. Simulation and experimental results show that our fusion technique achieves higher location accuracy in spite of location errors in the estimators.\",\"PeriodicalId\":273567,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2012.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Error Modeling and Estimation Fusion for Indoor Localization
There has been much interest in offering multimedia location-based service (LBS) to indoor users (e.g., sending video/audio streams according to user locations). Offering good LBS largely depends on accurate indoor localization of mobile stations (MSs). To achieve that, in this paper we first model and analyze the error characteristics of important indoor localization schemes, using Radio Frequency Identification (RFID) and Wi-Fi. Our models are simple to use, capturing important system parameters and measurement noises, and quantifying how they affect the accuracies of the localization. Given that there have been many indoor localization techniques deployed, an MS may receive simultaneously multiple co-existing estimations on its location. Equipped with the understanding of location errors, we then investigate how to optimally combine, or fuse, all the co-existing estimations of an MS's location. We present computationally-efficient closed-form expressions to fuse the outputs of the estimators. Simulation and experimental results show that our fusion technique achieves higher location accuracy in spite of location errors in the estimators.