Mi Liao, Zonghao Guo, Yuze Wang, Peng Yuan, Bailan Feng, Fang Wan
{"title":"AttentionShift:用于点监督实例分割的迭代估计的基于部分的注意图","authors":"Mi Liao, Zonghao Guo, Yuze Wang, Peng Yuan, Bailan Feng, Fang Wan","doi":"10.1109/CVPR52729.2023.01870","DOIUrl":null,"url":null,"abstract":"Pointly supervised instance segmentation (PSIS) learns to segment objects using a single point within the object extent as supervision. Challenged by the non-negligible semantic variance between object parts, however, the single supervision point causes semantic bias and false segmentation. In this study, we propose an AttentionShift method, to solve the semantic bias issue by iteratively decomposing the instance attention map to parts and estimating fine-grained semantics of each part. AttentionShift consists of two modules plugged on the vision transformer backbone: (i) token querying for pointly supervised attention map generation, and (ii) key-point shift, which re-estimates part-based attention maps by key-point filtering in the feature space. These two steps are iteratively performed so that the part-based attention maps are optimized spatially as well as in the feature space to cover full object extent. Experiments on PASCAL VOC and MS COCO 2017 datasets show that AttentionShift respectively improves the state-of-the-art of by 7.7% and 4.8% under mAP@0.5, setting a solid PSIS baseline using vision transformer.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AttentionShift: Iteratively Estimated Part-Based Attention Map for Pointly Supervised Instance Segmentation\",\"authors\":\"Mi Liao, Zonghao Guo, Yuze Wang, Peng Yuan, Bailan Feng, Fang Wan\",\"doi\":\"10.1109/CVPR52729.2023.01870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pointly supervised instance segmentation (PSIS) learns to segment objects using a single point within the object extent as supervision. Challenged by the non-negligible semantic variance between object parts, however, the single supervision point causes semantic bias and false segmentation. In this study, we propose an AttentionShift method, to solve the semantic bias issue by iteratively decomposing the instance attention map to parts and estimating fine-grained semantics of each part. AttentionShift consists of two modules plugged on the vision transformer backbone: (i) token querying for pointly supervised attention map generation, and (ii) key-point shift, which re-estimates part-based attention maps by key-point filtering in the feature space. These two steps are iteratively performed so that the part-based attention maps are optimized spatially as well as in the feature space to cover full object extent. Experiments on PASCAL VOC and MS COCO 2017 datasets show that AttentionShift respectively improves the state-of-the-art of by 7.7% and 4.8% under mAP@0.5, setting a solid PSIS baseline using vision transformer.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.01870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pointly supervised instance segmentation (PSIS) learns to segment objects using a single point within the object extent as supervision. Challenged by the non-negligible semantic variance between object parts, however, the single supervision point causes semantic bias and false segmentation. In this study, we propose an AttentionShift method, to solve the semantic bias issue by iteratively decomposing the instance attention map to parts and estimating fine-grained semantics of each part. AttentionShift consists of two modules plugged on the vision transformer backbone: (i) token querying for pointly supervised attention map generation, and (ii) key-point shift, which re-estimates part-based attention maps by key-point filtering in the feature space. These two steps are iteratively performed so that the part-based attention maps are optimized spatially as well as in the feature space to cover full object extent. Experiments on PASCAL VOC and MS COCO 2017 datasets show that AttentionShift respectively improves the state-of-the-art of by 7.7% and 4.8% under mAP@0.5, setting a solid PSIS baseline using vision transformer.