R. K. Lenka, Rabindra Kumar Barik, Noopur Gupta, Syed Mohd Ali, A. Rath, Harishchandra Dubey
{"title":"用于地理空间大数据分析的SpatialHadoop和GeoSpark的对比分析","authors":"R. K. Lenka, Rabindra Kumar Barik, Noopur Gupta, Syed Mohd Ali, A. Rath, Harishchandra Dubey","doi":"10.1109/IC3I.2016.7918013","DOIUrl":null,"url":null,"abstract":"In this digitalised world where every information is stored, the data a are growing exponentially. It is estimated that data are doubles itself every two years. Geospatial data are one of the prime contributors to the big data scenario. There are numerous tools of the big data analytics. But not all the big data analytics tools are capabilities to handle geospatial big data. In the present paper, it has been discussed about the recent two popular open source geospatial big data analytical tools i.e. SpatialHadoop and GeoSpark which can be used for analysis and process the geospatial big data in efficient manner. It has compared the architectural view of SpatialHadoop and GeoSpark. Through the architectural comparison, it has also summarised the merits and demerits of these tools according the execution times and volume of the data which has been used.","PeriodicalId":305971,"journal":{"name":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Comparative analysis of SpatialHadoop and GeoSpark for geospatial big data analytics\",\"authors\":\"R. K. Lenka, Rabindra Kumar Barik, Noopur Gupta, Syed Mohd Ali, A. Rath, Harishchandra Dubey\",\"doi\":\"10.1109/IC3I.2016.7918013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this digitalised world where every information is stored, the data a are growing exponentially. It is estimated that data are doubles itself every two years. Geospatial data are one of the prime contributors to the big data scenario. There are numerous tools of the big data analytics. But not all the big data analytics tools are capabilities to handle geospatial big data. In the present paper, it has been discussed about the recent two popular open source geospatial big data analytical tools i.e. SpatialHadoop and GeoSpark which can be used for analysis and process the geospatial big data in efficient manner. It has compared the architectural view of SpatialHadoop and GeoSpark. Through the architectural comparison, it has also summarised the merits and demerits of these tools according the execution times and volume of the data which has been used.\",\"PeriodicalId\":305971,\"journal\":{\"name\":\"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2016.7918013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2016.7918013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative analysis of SpatialHadoop and GeoSpark for geospatial big data analytics
In this digitalised world where every information is stored, the data a are growing exponentially. It is estimated that data are doubles itself every two years. Geospatial data are one of the prime contributors to the big data scenario. There are numerous tools of the big data analytics. But not all the big data analytics tools are capabilities to handle geospatial big data. In the present paper, it has been discussed about the recent two popular open source geospatial big data analytical tools i.e. SpatialHadoop and GeoSpark which can be used for analysis and process the geospatial big data in efficient manner. It has compared the architectural view of SpatialHadoop and GeoSpark. Through the architectural comparison, it has also summarised the merits and demerits of these tools according the execution times and volume of the data which has been used.