电压稳定约束下风力发电的优化配置

Mostafa Bakhtvar, A. Keane
{"title":"电压稳定约束下风力发电的优化配置","authors":"Mostafa Bakhtvar, A. Keane","doi":"10.1109/ISGTEurope.2013.6695372","DOIUrl":null,"url":null,"abstract":"In power systems the occurrence probability of operating points close to network limits may be increased as a result of high wind penetration. Consequences of such scenarios include inefficient exploitation of both wind and economic resources. A well chosen allocation of wind capacity not only is in line with the trend of renewables integration in power systems but also allows for limiting the occurrence probability of unsafe operating points that may require costly remedies. In this work, a voltage stability constrained optimal power flow (VSC-OPF) framework is presented for transmission system planning and applied to wind capacity allocation. This framework captures multiple wind and demand scenarios within the OPF. The pattern of wind capacity allocation is studied in order to assess its impact on voltage stability and the total wind capacity allocation. The results emphasize the effect of the capacity allocation pattern on improvement of voltage stability.","PeriodicalId":307118,"journal":{"name":"IEEE PES ISGT Europe 2013","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal allocation of wind generation subject to voltage stability constraints\",\"authors\":\"Mostafa Bakhtvar, A. Keane\",\"doi\":\"10.1109/ISGTEurope.2013.6695372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In power systems the occurrence probability of operating points close to network limits may be increased as a result of high wind penetration. Consequences of such scenarios include inefficient exploitation of both wind and economic resources. A well chosen allocation of wind capacity not only is in line with the trend of renewables integration in power systems but also allows for limiting the occurrence probability of unsafe operating points that may require costly remedies. In this work, a voltage stability constrained optimal power flow (VSC-OPF) framework is presented for transmission system planning and applied to wind capacity allocation. This framework captures multiple wind and demand scenarios within the OPF. The pattern of wind capacity allocation is studied in order to assess its impact on voltage stability and the total wind capacity allocation. The results emphasize the effect of the capacity allocation pattern on improvement of voltage stability.\",\"PeriodicalId\":307118,\"journal\":{\"name\":\"IEEE PES ISGT Europe 2013\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES ISGT Europe 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2013.6695372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES ISGT Europe 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2013.6695372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在电力系统中,由于风侵量大,工作点靠近电网极限的发生概率可能会增加。这种情况的后果包括对风能和经济资源的低效开发。合理分配风电容量不仅符合电力系统中可再生能源整合的趋势,而且还可以限制可能需要昂贵补救措施的不安全操作点的发生概率。本文提出了一种电压稳定约束最优潮流(VSC-OPF)框架,用于输电系统规划,并将其应用于风电容量分配。该框架涵盖了OPF内的多种风能和需求情景。研究风电容量分配模式,以评估其对电压稳定性和总风电容量分配的影响。结果强调了容量分配方式对提高电压稳定性的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal allocation of wind generation subject to voltage stability constraints
In power systems the occurrence probability of operating points close to network limits may be increased as a result of high wind penetration. Consequences of such scenarios include inefficient exploitation of both wind and economic resources. A well chosen allocation of wind capacity not only is in line with the trend of renewables integration in power systems but also allows for limiting the occurrence probability of unsafe operating points that may require costly remedies. In this work, a voltage stability constrained optimal power flow (VSC-OPF) framework is presented for transmission system planning and applied to wind capacity allocation. This framework captures multiple wind and demand scenarios within the OPF. The pattern of wind capacity allocation is studied in order to assess its impact on voltage stability and the total wind capacity allocation. The results emphasize the effect of the capacity allocation pattern on improvement of voltage stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信