基于虚拟空间粒度的RFID数据流数据清洗方法

Baoyan Song, Pengfei Qin, Hao Wang, Weihong Xuan, Ge Yu
{"title":"基于虚拟空间粒度的RFID数据流数据清洗方法","authors":"Baoyan Song, Pengfei Qin, Hao Wang, Weihong Xuan, Ge Yu","doi":"10.1109/HIS.2009.266","DOIUrl":null,"url":null,"abstract":"RFID holds the promise of real-time identifying, locating, tracking and monitoring physical objects without line of sight, and can be used for a wide range of pervasive computing applications. To achieve these goals, RFID data have to be collected, filtered, and transformed into semantic application data. RFID data, however, contain false readings and duplicates. Such data cannot be used directly by applications unless they are filtered and cleaned. To compensate for the inherent unreliability of RFID data streams, most RFID middleware systems employ a “smoothing filtering”. In this paper, a new “smoothing filtering” approach named bSpace is proposed, which is based on the concept of virtual spatial granularity. For providing accurate RFID data to applications, bSpace uses a Bayesian estimation algorithm to fill up false negatives, and uses the rules which we define to solve false positives.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"bSpace: A Data Cleaning Approach for RFID Data Streams Based on Virtual Spatial Granularity\",\"authors\":\"Baoyan Song, Pengfei Qin, Hao Wang, Weihong Xuan, Ge Yu\",\"doi\":\"10.1109/HIS.2009.266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RFID holds the promise of real-time identifying, locating, tracking and monitoring physical objects without line of sight, and can be used for a wide range of pervasive computing applications. To achieve these goals, RFID data have to be collected, filtered, and transformed into semantic application data. RFID data, however, contain false readings and duplicates. Such data cannot be used directly by applications unless they are filtered and cleaned. To compensate for the inherent unreliability of RFID data streams, most RFID middleware systems employ a “smoothing filtering”. In this paper, a new “smoothing filtering” approach named bSpace is proposed, which is based on the concept of virtual spatial granularity. For providing accurate RFID data to applications, bSpace uses a Bayesian estimation algorithm to fill up false negatives, and uses the rules which we define to solve false positives.\",\"PeriodicalId\":414085,\"journal\":{\"name\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2009.266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

RFID具有实时识别、定位、跟踪和监控无视线物理对象的前景,可用于广泛的普适计算应用。为了实现这些目标,必须收集、过滤RFID数据并将其转换为语义应用程序数据。然而,RFID数据包含错误读数和重复。这些数据不能被应用程序直接使用,除非它们经过过滤和清理。为了补偿RFID数据流固有的不可靠性,大多数RFID中间件系统采用“平滑过滤”。本文基于虚拟空间粒度的概念,提出了一种新的“平滑滤波”方法——bSpace。为了向应用程序提供准确的RFID数据,bSpace使用贝叶斯估计算法来填补假阴性,并使用我们定义的规则来解决假阳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
bSpace: A Data Cleaning Approach for RFID Data Streams Based on Virtual Spatial Granularity
RFID holds the promise of real-time identifying, locating, tracking and monitoring physical objects without line of sight, and can be used for a wide range of pervasive computing applications. To achieve these goals, RFID data have to be collected, filtered, and transformed into semantic application data. RFID data, however, contain false readings and duplicates. Such data cannot be used directly by applications unless they are filtered and cleaned. To compensate for the inherent unreliability of RFID data streams, most RFID middleware systems employ a “smoothing filtering”. In this paper, a new “smoothing filtering” approach named bSpace is proposed, which is based on the concept of virtual spatial granularity. For providing accurate RFID data to applications, bSpace uses a Bayesian estimation algorithm to fill up false negatives, and uses the rules which we define to solve false positives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信