大型音频数据库中一种高效的音乐搜索方法

Xiaomei Chen, Xiaoxu Kong
{"title":"大型音频数据库中一种高效的音乐搜索方法","authors":"Xiaomei Chen, Xiaoxu Kong","doi":"10.1109/ICMCCE.2018.00108","DOIUrl":null,"url":null,"abstract":"In this paper we study the music content search method in a large audio database. First we study the pitch feature extraction algorithm, we propose a novel method on pitch estimation for music signals. Second, we study the template matching algorithm for large database, and we propose an effective method using dynamic template wrapping and linear scaling distance. Finally, experimental results are provided. The results show that the proposed system is efficient in audio data searching compared with traditional template matching method.","PeriodicalId":198834,"journal":{"name":"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Music Search Method in Large Audio Database\",\"authors\":\"Xiaomei Chen, Xiaoxu Kong\",\"doi\":\"10.1109/ICMCCE.2018.00108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the music content search method in a large audio database. First we study the pitch feature extraction algorithm, we propose a novel method on pitch estimation for music signals. Second, we study the template matching algorithm for large database, and we propose an effective method using dynamic template wrapping and linear scaling distance. Finally, experimental results are provided. The results show that the proposed system is efficient in audio data searching compared with traditional template matching method.\",\"PeriodicalId\":198834,\"journal\":{\"name\":\"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMCCE.2018.00108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCCE.2018.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了大型音频数据库中音乐内容的搜索方法。首先研究了音高特征提取算法,提出了一种新的音乐信号音高估计方法。其次,研究了大型数据库的模板匹配算法,提出了一种基于动态模板包装和线性缩放距离的有效方法。最后给出了实验结果。结果表明,与传统的模板匹配方法相比,该系统在音频数据搜索方面具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Music Search Method in Large Audio Database
In this paper we study the music content search method in a large audio database. First we study the pitch feature extraction algorithm, we propose a novel method on pitch estimation for music signals. Second, we study the template matching algorithm for large database, and we propose an effective method using dynamic template wrapping and linear scaling distance. Finally, experimental results are provided. The results show that the proposed system is efficient in audio data searching compared with traditional template matching method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信