基于潜狄利克雷马尔可夫聚类的无监督人类行为分类

Xudong Zhu, Hui Li
{"title":"基于潜狄利克雷马尔可夫聚类的无监督人类行为分类","authors":"Xudong Zhu, Hui Li","doi":"10.1109/iNCoS.2012.114","DOIUrl":null,"url":null,"abstract":"We present a novel unsupervised learning method for human action categories from video sequences using Latent Dirichlet Markov Clustering (LDMC). Video sequences are represented by a novel \"bag-of-words\" representation, where each frame corresponds to a \"word\". The algorithm automatically learns the probability distributions of the words and the intermediate topics corresponding to human action categories, and correlates actions over time. This is achieved by using Latent Dirichlet Markov Clustering (LDMC). Our approach builds on Hidden Markov Models (HMMs) and Latent Dirichlet Allocation (LDA), and overcomes their drawbacks on accuracy, robustness and computational efficiency. A collapsed Gibbs sampler is derived for offline learning with unlabeled training data, and significantly, a new approximation to online Bayesian inference is formulated to enable human action classification in new video data online in real-time. The strength of this mothod is demonstrated by unsupervised learning of human action categories and detecting irregular actions in different datasets.","PeriodicalId":287478,"journal":{"name":"2012 Fourth International Conference on Intelligent Networking and Collaborative Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unsupervised Human Action Categorization Using Latent Dirichlet Markov Clustering\",\"authors\":\"Xudong Zhu, Hui Li\",\"doi\":\"10.1109/iNCoS.2012.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel unsupervised learning method for human action categories from video sequences using Latent Dirichlet Markov Clustering (LDMC). Video sequences are represented by a novel \\\"bag-of-words\\\" representation, where each frame corresponds to a \\\"word\\\". The algorithm automatically learns the probability distributions of the words and the intermediate topics corresponding to human action categories, and correlates actions over time. This is achieved by using Latent Dirichlet Markov Clustering (LDMC). Our approach builds on Hidden Markov Models (HMMs) and Latent Dirichlet Allocation (LDA), and overcomes their drawbacks on accuracy, robustness and computational efficiency. A collapsed Gibbs sampler is derived for offline learning with unlabeled training data, and significantly, a new approximation to online Bayesian inference is formulated to enable human action classification in new video data online in real-time. The strength of this mothod is demonstrated by unsupervised learning of human action categories and detecting irregular actions in different datasets.\",\"PeriodicalId\":287478,\"journal\":{\"name\":\"2012 Fourth International Conference on Intelligent Networking and Collaborative Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Intelligent Networking and Collaborative Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iNCoS.2012.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iNCoS.2012.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于潜狄利克雷马尔可夫聚类(LDMC)的视频序列人类动作分类的无监督学习方法。视频序列由一种新颖的“词袋”表示法表示,其中每帧对应一个“词”。该算法自动学习与人类动作类别相对应的单词和中间主题的概率分布,并随时间将动作关联起来。这是通过使用潜狄利克雷马尔可夫聚类(LDMC)实现的。我们的方法建立在隐马尔可夫模型(hmm)和潜狄利克雷分配(LDA)的基础上,克服了它们在准确性、鲁棒性和计算效率方面的缺点。推导了一个用于未标记训练数据离线学习的折叠Gibbs采样器,并且重要的是,制定了一个新的近似在线贝叶斯推理,以便实时在线新视频数据中的人类动作分类。通过对人类动作类别的无监督学习和检测不同数据集中的不规则动作,证明了该方法的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Human Action Categorization Using Latent Dirichlet Markov Clustering
We present a novel unsupervised learning method for human action categories from video sequences using Latent Dirichlet Markov Clustering (LDMC). Video sequences are represented by a novel "bag-of-words" representation, where each frame corresponds to a "word". The algorithm automatically learns the probability distributions of the words and the intermediate topics corresponding to human action categories, and correlates actions over time. This is achieved by using Latent Dirichlet Markov Clustering (LDMC). Our approach builds on Hidden Markov Models (HMMs) and Latent Dirichlet Allocation (LDA), and overcomes their drawbacks on accuracy, robustness and computational efficiency. A collapsed Gibbs sampler is derived for offline learning with unlabeled training data, and significantly, a new approximation to online Bayesian inference is formulated to enable human action classification in new video data online in real-time. The strength of this mothod is demonstrated by unsupervised learning of human action categories and detecting irregular actions in different datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信