数据挖掘中关联规则的并行实现

S. Einakian, M. Ghanbari
{"title":"数据挖掘中关联规则的并行实现","authors":"S. Einakian, M. Ghanbari","doi":"10.1109/SSST.2006.1619085","DOIUrl":null,"url":null,"abstract":"This paper discusses parallel data mining architecture for large volume of data which eventually scanning billions of rows of data per record. Here we compare the different parallel algorithms for association rule mining and discuss the advantages and disadvantages of each method. We also compare the computational time of serial and parallel algorithms for association rule mining","PeriodicalId":420822,"journal":{"name":"2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Parallel implementation of association rule in data mining\",\"authors\":\"S. Einakian, M. Ghanbari\",\"doi\":\"10.1109/SSST.2006.1619085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses parallel data mining architecture for large volume of data which eventually scanning billions of rows of data per record. Here we compare the different parallel algorithms for association rule mining and discuss the advantages and disadvantages of each method. We also compare the computational time of serial and parallel algorithms for association rule mining\",\"PeriodicalId\":420822,\"journal\":{\"name\":\"2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2006.1619085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2006.1619085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文讨论了大数据量的并行数据挖掘体系结构,最终每条记录扫描数十亿行数据。在这里,我们比较了不同的并行关联规则挖掘算法,并讨论了每种方法的优缺点。我们还比较了关联规则挖掘的串行和并行算法的计算时间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel implementation of association rule in data mining
This paper discusses parallel data mining architecture for large volume of data which eventually scanning billions of rows of data per record. Here we compare the different parallel algorithms for association rule mining and discuss the advantages and disadvantages of each method. We also compare the computational time of serial and parallel algorithms for association rule mining
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信