隐私敏感数据中的集体危害

Nicholas M. Weber
{"title":"隐私敏感数据中的集体危害","authors":"Nicholas M. Weber","doi":"10.1109/JCDL52503.2021.00032","DOIUrl":null,"url":null,"abstract":"Privacy protections for human subject data are often focused on reducing individual harms that result from improper disclosure of personally identifiable information. However, in a networked environment where information infrastructures enable rapid sharing and linking of different datasets there exist numerous harms which abstract to group or collective levels. In this paper we discuss how privacy protections aimed at individual harms, as opposed to collective or group harms, results in an incompatible notion of privacy protections for social science research that synthesizes multiple data sources. Using the framework of Contextual Integrity we present empirical scenarios drawn from 17 in-depth interviews with researchers conducting synthetic research using one or more privacy sensitive data sources. We use these scenarios to identify ways that digital infrastructure providers can help social scientists manage collective harms over time through specific, targeted privacy engineering of supporting research infrastructures and data curation.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surfacing Collective Harms in Privacy Sensitive Data\",\"authors\":\"Nicholas M. Weber\",\"doi\":\"10.1109/JCDL52503.2021.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy protections for human subject data are often focused on reducing individual harms that result from improper disclosure of personally identifiable information. However, in a networked environment where information infrastructures enable rapid sharing and linking of different datasets there exist numerous harms which abstract to group or collective levels. In this paper we discuss how privacy protections aimed at individual harms, as opposed to collective or group harms, results in an incompatible notion of privacy protections for social science research that synthesizes multiple data sources. Using the framework of Contextual Integrity we present empirical scenarios drawn from 17 in-depth interviews with researchers conducting synthetic research using one or more privacy sensitive data sources. We use these scenarios to identify ways that digital infrastructure providers can help social scientists manage collective harms over time through specific, targeted privacy engineering of supporting research infrastructures and data curation.\",\"PeriodicalId\":112400,\"journal\":{\"name\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCDL52503.2021.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类受试者数据的隐私保护通常侧重于减少因个人身份信息的不当披露而造成的个人伤害。然而,在信息基础设施能够快速共享和链接不同数据集的网络环境中,存在许多抽象到组或集体级别的危害。在本文中,我们讨论了针对个人伤害的隐私保护,而不是针对集体或群体伤害的隐私保护,如何导致综合多个数据源的社会科学研究中隐私保护的不相容概念。利用上下文完整性的框架,我们提出了从17个深度访谈中得出的经验情景,这些访谈是与使用一个或多个隐私敏感数据源进行综合研究的研究人员进行的。我们使用这些场景来确定数字基础设施提供商可以通过支持研究基础设施和数据管理的具体、有针对性的隐私工程来帮助社会科学家管理集体危害的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surfacing Collective Harms in Privacy Sensitive Data
Privacy protections for human subject data are often focused on reducing individual harms that result from improper disclosure of personally identifiable information. However, in a networked environment where information infrastructures enable rapid sharing and linking of different datasets there exist numerous harms which abstract to group or collective levels. In this paper we discuss how privacy protections aimed at individual harms, as opposed to collective or group harms, results in an incompatible notion of privacy protections for social science research that synthesizes multiple data sources. Using the framework of Contextual Integrity we present empirical scenarios drawn from 17 in-depth interviews with researchers conducting synthetic research using one or more privacy sensitive data sources. We use these scenarios to identify ways that digital infrastructure providers can help social scientists manage collective harms over time through specific, targeted privacy engineering of supporting research infrastructures and data curation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信