基于PCA和LDA的特征提取在人脸识别中的比较研究

Erwin Hidayat, Nur A. Fajrian, A. Muda, Y. Choo, S. Ahmad
{"title":"基于PCA和LDA的特征提取在人脸识别中的比较研究","authors":"Erwin Hidayat, Nur A. Fajrian, A. Muda, Y. Choo, S. Ahmad","doi":"10.1109/ISIAS.2011.6122779","DOIUrl":null,"url":null,"abstract":"Feature extraction is important in face recognition. This paper presents a comparative study of feature extraction using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for face recognition. The evaluation parameters for the study are time and accuracy of each method. The experiments were conducted using six datasets of face images with different disturbance. The results showed that LDA is much better than PCA in overall image with various disturbances. While in time taken evaluation, PCA is faster than LDA.","PeriodicalId":139268,"journal":{"name":"2011 7th International Conference on Information Assurance and Security (IAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A comparative study of feature extraction using PCA and LDA for face recognition\",\"authors\":\"Erwin Hidayat, Nur A. Fajrian, A. Muda, Y. Choo, S. Ahmad\",\"doi\":\"10.1109/ISIAS.2011.6122779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature extraction is important in face recognition. This paper presents a comparative study of feature extraction using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for face recognition. The evaluation parameters for the study are time and accuracy of each method. The experiments were conducted using six datasets of face images with different disturbance. The results showed that LDA is much better than PCA in overall image with various disturbances. While in time taken evaluation, PCA is faster than LDA.\",\"PeriodicalId\":139268,\"journal\":{\"name\":\"2011 7th International Conference on Information Assurance and Security (IAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 7th International Conference on Information Assurance and Security (IAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIAS.2011.6122779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 7th International Conference on Information Assurance and Security (IAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIAS.2011.6122779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

特征提取是人脸识别的重要内容。本文对主成分分析(PCA)和线性判别分析(LDA)在人脸识别中的特征提取进行了比较研究。本研究的评价参数为每种方法的时间和准确性。实验采用6组不同干扰条件下的人脸图像进行。结果表明,在具有多种干扰的整体图像中,LDA的效果明显优于PCA。而在时间评价上,PCA比LDA更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of feature extraction using PCA and LDA for face recognition
Feature extraction is important in face recognition. This paper presents a comparative study of feature extraction using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for face recognition. The evaluation parameters for the study are time and accuracy of each method. The experiments were conducted using six datasets of face images with different disturbance. The results showed that LDA is much better than PCA in overall image with various disturbances. While in time taken evaluation, PCA is faster than LDA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信