Leta Yobsan Bayisa, Weidong Wang, Qing-xian Wang, Meseret Debele Gurmu, Lamessa Bona Debela
{"title":"基于稀疏高斯过程的大数据推理与预测","authors":"Leta Yobsan Bayisa, Weidong Wang, Qing-xian Wang, Meseret Debele Gurmu, Lamessa Bona Debela","doi":"10.1145/3529570.3529580","DOIUrl":null,"url":null,"abstract":"Gaussian process is one of computationally expensive algorithm for large datasets and lack of the flexibility to model different datasets is a common problem for modeling it. We introduce sparse Gaussian regression with the combination of designed kernels to solve the computational complexity of a traditional Gaussian process by taking pseudo input from large datasets and developing a model with better accuracy which enables Gaussian process application. We design a better combination of the kernel that can catch up with most of our data points. We demonstrate the approach on a large weather dataset and sales record dataset. Both are open source big datasets available online. Numerous experiments and comparisons with traditional Gaussian process methods using both large datasets demonstrate the efficiency and accuracy of sparse Gaussian processes.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference and Prediction in Big Data Using Sparse Gaussian Process Method\",\"authors\":\"Leta Yobsan Bayisa, Weidong Wang, Qing-xian Wang, Meseret Debele Gurmu, Lamessa Bona Debela\",\"doi\":\"10.1145/3529570.3529580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian process is one of computationally expensive algorithm for large datasets and lack of the flexibility to model different datasets is a common problem for modeling it. We introduce sparse Gaussian regression with the combination of designed kernels to solve the computational complexity of a traditional Gaussian process by taking pseudo input from large datasets and developing a model with better accuracy which enables Gaussian process application. We design a better combination of the kernel that can catch up with most of our data points. We demonstrate the approach on a large weather dataset and sales record dataset. Both are open source big datasets available online. Numerous experiments and comparisons with traditional Gaussian process methods using both large datasets demonstrate the efficiency and accuracy of sparse Gaussian processes.\",\"PeriodicalId\":430367,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Digital Signal Processing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529570.3529580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inference and Prediction in Big Data Using Sparse Gaussian Process Method
Gaussian process is one of computationally expensive algorithm for large datasets and lack of the flexibility to model different datasets is a common problem for modeling it. We introduce sparse Gaussian regression with the combination of designed kernels to solve the computational complexity of a traditional Gaussian process by taking pseudo input from large datasets and developing a model with better accuracy which enables Gaussian process application. We design a better combination of the kernel that can catch up with most of our data points. We demonstrate the approach on a large weather dataset and sales record dataset. Both are open source big datasets available online. Numerous experiments and comparisons with traditional Gaussian process methods using both large datasets demonstrate the efficiency and accuracy of sparse Gaussian processes.