基于序列嵌入的机器学习中各种数据预处理对人类病毒PPI分类的影响

Fatma Indriani, Kunti Rabiatul Mahmudah, K. Satou
{"title":"基于序列嵌入的机器学习中各种数据预处理对人类病毒PPI分类的影响","authors":"Fatma Indriani, Kunti Rabiatul Mahmudah, K. Satou","doi":"10.1109/ic2ie53219.2021.9649426","DOIUrl":null,"url":null,"abstract":"Identifying human-virus protein-protein interactions (PPI) is an important task which is increasingly researched using computational methods. Previous research shows that using doc2vec encoding scheme for features combined with Random Forest classifier gives promising performance. However, human-virus PPI data are usually imbalanced, and additional preprocessing step has not been investigated in this task. In this work, we investigated various preprocessing methods and modifications to improve classification performance. The result shows that a modification in the feature formulation method, combined with random oversampling can improve the classification AUC result from 0.9414 to 0.9448.","PeriodicalId":178443,"journal":{"name":"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Various Data Preprocessing in Sequence Embedding-Based Machine Learning for Human-Virus PPI Classification\",\"authors\":\"Fatma Indriani, Kunti Rabiatul Mahmudah, K. Satou\",\"doi\":\"10.1109/ic2ie53219.2021.9649426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying human-virus protein-protein interactions (PPI) is an important task which is increasingly researched using computational methods. Previous research shows that using doc2vec encoding scheme for features combined with Random Forest classifier gives promising performance. However, human-virus PPI data are usually imbalanced, and additional preprocessing step has not been investigated in this task. In this work, we investigated various preprocessing methods and modifications to improve classification performance. The result shows that a modification in the feature formulation method, combined with random oversampling can improve the classification AUC result from 0.9414 to 0.9448.\",\"PeriodicalId\":178443,\"journal\":{\"name\":\"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ic2ie53219.2021.9649426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ic2ie53219.2021.9649426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

识别人-病毒蛋白-蛋白相互作用(PPI)是一项重要的任务,越来越多的研究使用计算方法。已有的研究表明,将doc2vec编码方案与随机森林分类器相结合,对特征进行编码具有良好的性能。然而,人类病毒PPI数据通常是不平衡的,并且在本任务中尚未研究额外的预处理步骤。在这项工作中,我们研究了各种预处理方法和修改,以提高分类性能。结果表明,对特征表述方法进行修改,结合随机过采样,可以将分类AUC结果从0.9414提高到0.9448。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Various Data Preprocessing in Sequence Embedding-Based Machine Learning for Human-Virus PPI Classification
Identifying human-virus protein-protein interactions (PPI) is an important task which is increasingly researched using computational methods. Previous research shows that using doc2vec encoding scheme for features combined with Random Forest classifier gives promising performance. However, human-virus PPI data are usually imbalanced, and additional preprocessing step has not been investigated in this task. In this work, we investigated various preprocessing methods and modifications to improve classification performance. The result shows that a modification in the feature formulation method, combined with random oversampling can improve the classification AUC result from 0.9414 to 0.9448.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信