{"title":"利用奇异区域实现更快的RBF网络学习","authors":"Seiya Satoh, R. Nakano","doi":"10.5220/0007367205010508","DOIUrl":null,"url":null,"abstract":"There are two ways to learn radial basis function (RBF) networks: one-stage and two-stage learnings. Recently a very powerful one-stage learning method called RBF-SSF has been proposed, which can stably find a series of excellent solutions, making good use of singular regions, and can monotonically decrease training error along with the increase of hidden units. RBF-SSF was built by applying the SSF (singularity stairs following) paradigm to RBF networks; the SSF paradigm was originally and successfully proposed for multilayer perceptrons. Although RBF-SSF has the strong capability to find excellent solutions, it required a lot of time mainly because it computes the Hessian. This paper proposes a faster version of RBF-SSF called RBF-SSF(pH) by introducing partial calculation of the Hessian. The experiments using two datasets showed RBF-SSF(pH) ran as fast as usual one-stage learning methods while keeping the excellent solution quality.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faster RBF Network Learning Utilizing Singular Regions\",\"authors\":\"Seiya Satoh, R. Nakano\",\"doi\":\"10.5220/0007367205010508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two ways to learn radial basis function (RBF) networks: one-stage and two-stage learnings. Recently a very powerful one-stage learning method called RBF-SSF has been proposed, which can stably find a series of excellent solutions, making good use of singular regions, and can monotonically decrease training error along with the increase of hidden units. RBF-SSF was built by applying the SSF (singularity stairs following) paradigm to RBF networks; the SSF paradigm was originally and successfully proposed for multilayer perceptrons. Although RBF-SSF has the strong capability to find excellent solutions, it required a lot of time mainly because it computes the Hessian. This paper proposes a faster version of RBF-SSF called RBF-SSF(pH) by introducing partial calculation of the Hessian. The experiments using two datasets showed RBF-SSF(pH) ran as fast as usual one-stage learning methods while keeping the excellent solution quality.\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007367205010508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007367205010508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Faster RBF Network Learning Utilizing Singular Regions
There are two ways to learn radial basis function (RBF) networks: one-stage and two-stage learnings. Recently a very powerful one-stage learning method called RBF-SSF has been proposed, which can stably find a series of excellent solutions, making good use of singular regions, and can monotonically decrease training error along with the increase of hidden units. RBF-SSF was built by applying the SSF (singularity stairs following) paradigm to RBF networks; the SSF paradigm was originally and successfully proposed for multilayer perceptrons. Although RBF-SSF has the strong capability to find excellent solutions, it required a lot of time mainly because it computes the Hessian. This paper proposes a faster version of RBF-SSF called RBF-SSF(pH) by introducing partial calculation of the Hessian. The experiments using two datasets showed RBF-SSF(pH) ran as fast as usual one-stage learning methods while keeping the excellent solution quality.