利用奇异区域实现更快的RBF网络学习

Seiya Satoh, R. Nakano
{"title":"利用奇异区域实现更快的RBF网络学习","authors":"Seiya Satoh, R. Nakano","doi":"10.5220/0007367205010508","DOIUrl":null,"url":null,"abstract":"There are two ways to learn radial basis function (RBF) networks: one-stage and two-stage learnings. Recently a very powerful one-stage learning method called RBF-SSF has been proposed, which can stably find a series of excellent solutions, making good use of singular regions, and can monotonically decrease training error along with the increase of hidden units. RBF-SSF was built by applying the SSF (singularity stairs following) paradigm to RBF networks; the SSF paradigm was originally and successfully proposed for multilayer perceptrons. Although RBF-SSF has the strong capability to find excellent solutions, it required a lot of time mainly because it computes the Hessian. This paper proposes a faster version of RBF-SSF called RBF-SSF(pH) by introducing partial calculation of the Hessian. The experiments using two datasets showed RBF-SSF(pH) ran as fast as usual one-stage learning methods while keeping the excellent solution quality.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faster RBF Network Learning Utilizing Singular Regions\",\"authors\":\"Seiya Satoh, R. Nakano\",\"doi\":\"10.5220/0007367205010508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two ways to learn radial basis function (RBF) networks: one-stage and two-stage learnings. Recently a very powerful one-stage learning method called RBF-SSF has been proposed, which can stably find a series of excellent solutions, making good use of singular regions, and can monotonically decrease training error along with the increase of hidden units. RBF-SSF was built by applying the SSF (singularity stairs following) paradigm to RBF networks; the SSF paradigm was originally and successfully proposed for multilayer perceptrons. Although RBF-SSF has the strong capability to find excellent solutions, it required a lot of time mainly because it computes the Hessian. This paper proposes a faster version of RBF-SSF called RBF-SSF(pH) by introducing partial calculation of the Hessian. The experiments using two datasets showed RBF-SSF(pH) ran as fast as usual one-stage learning methods while keeping the excellent solution quality.\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007367205010508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007367205010508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

径向基函数(RBF)网络有两种学习方法:一阶段学习和两阶段学习。最近提出了一种非常强大的单阶段学习方法RBF-SSF,它可以稳定地找到一系列优秀的解,很好地利用了奇异区域,并且可以随着隐藏单元的增加单调地减少训练误差。将SSF (singularity stairs following)模型应用于RBF网络,构建了RBF-SSF;SSF范式最初是针对多层感知器成功提出的。虽然RBF-SSF具有很强的寻找优秀解的能力,但主要是因为它需要计算Hessian,所以需要大量的时间。本文通过引入Hessian的部分计算,提出了一种更快的RBF-SSF,称为RBF-SSF(pH)。使用两个数据集的实验表明,RBF-SSF(pH)的运行速度与通常的单阶段学习方法一样快,同时保持了优异的解决方案质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faster RBF Network Learning Utilizing Singular Regions
There are two ways to learn radial basis function (RBF) networks: one-stage and two-stage learnings. Recently a very powerful one-stage learning method called RBF-SSF has been proposed, which can stably find a series of excellent solutions, making good use of singular regions, and can monotonically decrease training error along with the increase of hidden units. RBF-SSF was built by applying the SSF (singularity stairs following) paradigm to RBF networks; the SSF paradigm was originally and successfully proposed for multilayer perceptrons. Although RBF-SSF has the strong capability to find excellent solutions, it required a lot of time mainly because it computes the Hessian. This paper proposes a faster version of RBF-SSF called RBF-SSF(pH) by introducing partial calculation of the Hessian. The experiments using two datasets showed RBF-SSF(pH) ran as fast as usual one-stage learning methods while keeping the excellent solution quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信