在物联网医疗领域实现一致的数据表示

Roberto Reda, F. Piccinini, A. Carbonaro
{"title":"在物联网医疗领域实现一致的数据表示","authors":"Roberto Reda, F. Piccinini, A. Carbonaro","doi":"10.1145/3194658.3194668","DOIUrl":null,"url":null,"abstract":"Nowadays, the enormous volume of health and fitness data gathered from IoT wearable devices offers favourable opportunities to the research community. For instance, it can be exploited using sophisticated data analysis techniques, such as automatic reasoning, to find patterns and, extract information and new knowledge in order to enhance decision-making and deliver better healthcare. However, due to the high heterogeneity of data representation formats, the IoT healthcare landscape is characterised by an ubiquitous presence of data silos which prevents users and clinicians from obtaining a consistent representation of the whole knowledge. Semantic web technologies, such as ontologies and inference rules, have been shown as a promising way for the integration and exploitation of data from heterogeneous sources. In this paper, we present a semantic data model useful to: (1) consistently represent health and fitness data from heterogeneous IoT sources; (2) integrate and exchange them; and (3) enable automatic reasoning by inference engines.","PeriodicalId":216658,"journal":{"name":"Proceedings of the 2018 International Conference on Digital Health","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Towards Consistent Data Representation in the IoT Healthcare Landscape\",\"authors\":\"Roberto Reda, F. Piccinini, A. Carbonaro\",\"doi\":\"10.1145/3194658.3194668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the enormous volume of health and fitness data gathered from IoT wearable devices offers favourable opportunities to the research community. For instance, it can be exploited using sophisticated data analysis techniques, such as automatic reasoning, to find patterns and, extract information and new knowledge in order to enhance decision-making and deliver better healthcare. However, due to the high heterogeneity of data representation formats, the IoT healthcare landscape is characterised by an ubiquitous presence of data silos which prevents users and clinicians from obtaining a consistent representation of the whole knowledge. Semantic web technologies, such as ontologies and inference rules, have been shown as a promising way for the integration and exploitation of data from heterogeneous sources. In this paper, we present a semantic data model useful to: (1) consistently represent health and fitness data from heterogeneous IoT sources; (2) integrate and exchange them; and (3) enable automatic reasoning by inference engines.\",\"PeriodicalId\":216658,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Digital Health\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Digital Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194658.3194668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194658.3194668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

如今,从物联网可穿戴设备收集的大量健康和健身数据为研究界提供了有利的机会。例如,可以利用复杂的数据分析技术(如自动推理)来查找模式,提取信息和新知识,以增强决策并提供更好的医疗保健。然而,由于数据表示格式的高度异质性,物联网医疗领域的特点是无处不在的数据孤岛,这阻碍了用户和临床医生获得整个知识的一致表示。语义web技术,如本体和推理规则,已被证明是集成和利用异构数据源数据的一种很有前途的方法。在本文中,我们提出了一个语义数据模型,用于:(1)一致地表示来自异构物联网来源的健康和健身数据;(2)整合和交换;(3)通过推理引擎实现自动推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Consistent Data Representation in the IoT Healthcare Landscape
Nowadays, the enormous volume of health and fitness data gathered from IoT wearable devices offers favourable opportunities to the research community. For instance, it can be exploited using sophisticated data analysis techniques, such as automatic reasoning, to find patterns and, extract information and new knowledge in order to enhance decision-making and deliver better healthcare. However, due to the high heterogeneity of data representation formats, the IoT healthcare landscape is characterised by an ubiquitous presence of data silos which prevents users and clinicians from obtaining a consistent representation of the whole knowledge. Semantic web technologies, such as ontologies and inference rules, have been shown as a promising way for the integration and exploitation of data from heterogeneous sources. In this paper, we present a semantic data model useful to: (1) consistently represent health and fitness data from heterogeneous IoT sources; (2) integrate and exchange them; and (3) enable automatic reasoning by inference engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信