基于脑电图信号的三维上肢运动解码

Jeong-Hun Kim, Ricardo Chavarriaga, J. Millán, Seong-Whan Lee
{"title":"基于脑电图信号的三维上肢运动解码","authors":"Jeong-Hun Kim, Ricardo Chavarriaga, J. Millán, Seong-Whan Lee","doi":"10.1109/IWW-BCI.2013.6506648","DOIUrl":null,"url":null,"abstract":"A brain-computer interface (BCI) can be used to control a limb neuroprosthesis in patients. In particular, decoding trajectory of upper limb with motor imagery (MI) can support motor rehabilitation using a wearable robotic arm. Recent research shows the possibility of decoding hand movement trajectory from electroencephalography (EEG) signals. However, such studies are insufficient to apply motor rehabilitation, which are only considered hand movement trajectory. Although disabilities patients take correct hand movement, sometimes wrong elbow movement can be taken in motor rehabilitation. In this study, we explore to decode velocity of both hand and elbow at the same time from EEG signals when subjects move upper limb. The result shows feasibility toward controlling robotic arm.","PeriodicalId":129758,"journal":{"name":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Three-dimensional upper limb movement decoding from EEG signals\",\"authors\":\"Jeong-Hun Kim, Ricardo Chavarriaga, J. Millán, Seong-Whan Lee\",\"doi\":\"10.1109/IWW-BCI.2013.6506648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A brain-computer interface (BCI) can be used to control a limb neuroprosthesis in patients. In particular, decoding trajectory of upper limb with motor imagery (MI) can support motor rehabilitation using a wearable robotic arm. Recent research shows the possibility of decoding hand movement trajectory from electroencephalography (EEG) signals. However, such studies are insufficient to apply motor rehabilitation, which are only considered hand movement trajectory. Although disabilities patients take correct hand movement, sometimes wrong elbow movement can be taken in motor rehabilitation. In this study, we explore to decode velocity of both hand and elbow at the same time from EEG signals when subjects move upper limb. The result shows feasibility toward controlling robotic arm.\",\"PeriodicalId\":129758,\"journal\":{\"name\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2013.6506648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2013.6506648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

脑机接口(BCI)可用于控制患者的肢体神经假体。特别是,利用运动图像(MI)解码上肢运动轨迹可以支持可穿戴机械臂的运动康复。最近的研究显示了从脑电图信号中解码手部运动轨迹的可能性。然而,这些研究不足以应用于运动康复,只考虑手部运动轨迹。虽然残疾患者采取正确的手部动作,但在运动康复中有时也会采取错误的肘部动作。在本研究中,我们探索了从被试上肢运动时的脑电图信号中同时解码手和肘的速度。结果表明,该方法对机械臂的控制是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional upper limb movement decoding from EEG signals
A brain-computer interface (BCI) can be used to control a limb neuroprosthesis in patients. In particular, decoding trajectory of upper limb with motor imagery (MI) can support motor rehabilitation using a wearable robotic arm. Recent research shows the possibility of decoding hand movement trajectory from electroencephalography (EEG) signals. However, such studies are insufficient to apply motor rehabilitation, which are only considered hand movement trajectory. Although disabilities patients take correct hand movement, sometimes wrong elbow movement can be taken in motor rehabilitation. In this study, we explore to decode velocity of both hand and elbow at the same time from EEG signals when subjects move upper limb. The result shows feasibility toward controlling robotic arm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信