BANOVA:一个R包的层次贝叶斯方差分析

Chen Dong, M. Wedel
{"title":"BANOVA:一个R包的层次贝叶斯方差分析","authors":"Chen Dong, M. Wedel","doi":"10.18637/JSS.V081.I09","DOIUrl":null,"url":null,"abstract":"In this paper, we develop generalized hierarchical Bayesian ANOVA, to assist experimental researchers in the behavioral and social sciences in the analysis of the effects of experimentally manipulated within- and between-subjects factors. The method alleviates several limitations of classical ANOVA, still commonly employed in those fields. An accompanying R Package for hierarchical Bayesian ANOVA is developed. It offers statistical routines and several easy-to-use functions for estimation of hierarchical Bayesian ANOVA models that are tailored to the analysis of experimental research. Markov Chain Monte Carlo (MCMC) simulation is used to simulate posterior samples of the parameters of each model specified by the user. The core program of all models is written in R and JAGS. After preparing the data in the required format, users simply select an appropriate model, and estimate it without any advanced coding. The main aim of the R package is to offer freely accessible resources for hierarchical Bayesian ANOVA analysis, which makes it easy to use for behavioral researchers.","PeriodicalId":145189,"journal":{"name":"Robert H. Smith School of Business Research Paper Series","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"BANOVA: An R Package for Hierarchical Bayesian ANOVA\",\"authors\":\"Chen Dong, M. Wedel\",\"doi\":\"10.18637/JSS.V081.I09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop generalized hierarchical Bayesian ANOVA, to assist experimental researchers in the behavioral and social sciences in the analysis of the effects of experimentally manipulated within- and between-subjects factors. The method alleviates several limitations of classical ANOVA, still commonly employed in those fields. An accompanying R Package for hierarchical Bayesian ANOVA is developed. It offers statistical routines and several easy-to-use functions for estimation of hierarchical Bayesian ANOVA models that are tailored to the analysis of experimental research. Markov Chain Monte Carlo (MCMC) simulation is used to simulate posterior samples of the parameters of each model specified by the user. The core program of all models is written in R and JAGS. After preparing the data in the required format, users simply select an appropriate model, and estimate it without any advanced coding. The main aim of the R package is to offer freely accessible resources for hierarchical Bayesian ANOVA analysis, which makes it easy to use for behavioral researchers.\",\"PeriodicalId\":145189,\"journal\":{\"name\":\"Robert H. Smith School of Business Research Paper Series\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robert H. Smith School of Business Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18637/JSS.V081.I09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robert H. Smith School of Business Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V081.I09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们发展了广义层次贝叶斯方差分析,以帮助行为科学和社会科学的实验研究人员分析实验操纵的受试者内部和受试者之间因素的影响。该方法减轻了经典方差分析的几个局限性,仍然普遍应用于这些领域。开发了相应的R包用于分层贝叶斯方差分析。它提供了统计例程和几个易于使用的函数估计层次贝叶斯方差分析模型是量身定制的实验研究的分析。马尔可夫链蒙特卡罗(MCMC)仿真是对用户指定的每个模型参数的后验样本进行模拟。所有模型的核心程序均采用R语言和JAGS语言编写。在以所需格式准备好数据之后,用户只需选择一个合适的模型,并对其进行估计,而无需任何高级编码。R包的主要目的是为分层贝叶斯方差分析提供免费访问的资源,这使得行为研究人员易于使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BANOVA: An R Package for Hierarchical Bayesian ANOVA
In this paper, we develop generalized hierarchical Bayesian ANOVA, to assist experimental researchers in the behavioral and social sciences in the analysis of the effects of experimentally manipulated within- and between-subjects factors. The method alleviates several limitations of classical ANOVA, still commonly employed in those fields. An accompanying R Package for hierarchical Bayesian ANOVA is developed. It offers statistical routines and several easy-to-use functions for estimation of hierarchical Bayesian ANOVA models that are tailored to the analysis of experimental research. Markov Chain Monte Carlo (MCMC) simulation is used to simulate posterior samples of the parameters of each model specified by the user. The core program of all models is written in R and JAGS. After preparing the data in the required format, users simply select an appropriate model, and estimate it without any advanced coding. The main aim of the R package is to offer freely accessible resources for hierarchical Bayesian ANOVA analysis, which makes it easy to use for behavioral researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信