J. Sebastian, J. V. Kureethara, S. Naduvath, C. Dominic
{"title":"关于若干新图类的垂数","authors":"J. Sebastian, J. V. Kureethara, S. Naduvath, C. Dominic","doi":"10.37591/RRDMS.V6I1.1900","DOIUrl":null,"url":null,"abstract":"Abstract A decomposition of a graph is a collection of its edge disjoint sub-graphs such that their union is . If all the sub-graphs in the decomposition are paths, then it is a path decomposition. In this paper, we discuss the pendant number, the minimum number of end vertices of paths in a path decomposition of a graph. We also determine this parameter for some graph classes. Keywords: Decomposition, path decomposition, pendant number . MSC2010: 05C70, 05C38, 05C40 Cite this Article Jomon K. Sebastian, Joseph Varghese Kureethara, Sudev Naduvath, Charles Dominic. On the Pendant Number of Some New Graph Classes. Research & Reviews: Discrete Mathematical Structures . 2019; 6(1): 15–21p.","PeriodicalId":426140,"journal":{"name":"Research & Reviews: Discrete Mathematical Structures","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Pendant Number of Some New Graph Classes\",\"authors\":\"J. Sebastian, J. V. Kureethara, S. Naduvath, C. Dominic\",\"doi\":\"10.37591/RRDMS.V6I1.1900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A decomposition of a graph is a collection of its edge disjoint sub-graphs such that their union is . If all the sub-graphs in the decomposition are paths, then it is a path decomposition. In this paper, we discuss the pendant number, the minimum number of end vertices of paths in a path decomposition of a graph. We also determine this parameter for some graph classes. Keywords: Decomposition, path decomposition, pendant number . MSC2010: 05C70, 05C38, 05C40 Cite this Article Jomon K. Sebastian, Joseph Varghese Kureethara, Sudev Naduvath, Charles Dominic. On the Pendant Number of Some New Graph Classes. Research & Reviews: Discrete Mathematical Structures . 2019; 6(1): 15–21p.\",\"PeriodicalId\":426140,\"journal\":{\"name\":\"Research & Reviews: Discrete Mathematical Structures\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research & Reviews: Discrete Mathematical Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37591/RRDMS.V6I1.1900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research & Reviews: Discrete Mathematical Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37591/RRDMS.V6I1.1900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
图的分解是它的边不相交子图的集合,它们的并集为。如果分解中的所有子图都是路径,那么它就是路径分解。本文讨论了图的路径分解中路径的最小端点数,即路径的最小端点数。我们也为一些图类确定这个参数。关键词:分解,路径分解,挂件数。Jomon K. Sebastian, Joseph Varghese Kureethara, Sudev Naduvath, Charles Dominic。关于若干新图类的垂数。研究与综述:离散数学结构。2019;6 (1): 15-21p。
Abstract A decomposition of a graph is a collection of its edge disjoint sub-graphs such that their union is . If all the sub-graphs in the decomposition are paths, then it is a path decomposition. In this paper, we discuss the pendant number, the minimum number of end vertices of paths in a path decomposition of a graph. We also determine this parameter for some graph classes. Keywords: Decomposition, path decomposition, pendant number . MSC2010: 05C70, 05C38, 05C40 Cite this Article Jomon K. Sebastian, Joseph Varghese Kureethara, Sudev Naduvath, Charles Dominic. On the Pendant Number of Some New Graph Classes. Research & Reviews: Discrete Mathematical Structures . 2019; 6(1): 15–21p.