Yu-Ting Chen, J. Cong, M. Ghodrat, Muhuan Huang, Chunyue Liu, Bingjun Xiao, Yi Zou
{"title":"加速器丰富的cmp:从概念到实际硬件","authors":"Yu-Ting Chen, J. Cong, M. Ghodrat, Muhuan Huang, Chunyue Liu, Bingjun Xiao, Yi Zou","doi":"10.1109/ICCD.2013.6657039","DOIUrl":null,"url":null,"abstract":"Application-specific accelerators provide 10-100× improvement in power efficiency over general-purpose processors. The accelerator-rich architectures are especially promising. This work discusses a prototype of accelerator-rich CMPs (PARC). During our development of PARC in real hardware, we encountered a set of technical challenges and proposed corresponding solutions. First, we provided system IPs that serve a sea of accelerators to transfer data between userspace and accelerator memories without cache overhead. Second, we designed a dedicated interconnect between accelerators and memories to enable memory sharing. Third, we implemented an accelerator manager to virtualize accelerator resources for users. Finally, we developed an automated flow with a number of IP templates and customizable interfaces to a C-based synthesis flow to enable rapid design and update of PARC. We implemented PARC in a Virtex-6 FPGA chip with integration of platform-specific peripherals and booting of unmodified Linux. Experimental results show that PARC can fully exploit the energy benefits of accelerators at little system overhead.","PeriodicalId":398811,"journal":{"name":"2013 IEEE 31st International Conference on Computer Design (ICCD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Accelerator-rich CMPs: From concept to real hardware\",\"authors\":\"Yu-Ting Chen, J. Cong, M. Ghodrat, Muhuan Huang, Chunyue Liu, Bingjun Xiao, Yi Zou\",\"doi\":\"10.1109/ICCD.2013.6657039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application-specific accelerators provide 10-100× improvement in power efficiency over general-purpose processors. The accelerator-rich architectures are especially promising. This work discusses a prototype of accelerator-rich CMPs (PARC). During our development of PARC in real hardware, we encountered a set of technical challenges and proposed corresponding solutions. First, we provided system IPs that serve a sea of accelerators to transfer data between userspace and accelerator memories without cache overhead. Second, we designed a dedicated interconnect between accelerators and memories to enable memory sharing. Third, we implemented an accelerator manager to virtualize accelerator resources for users. Finally, we developed an automated flow with a number of IP templates and customizable interfaces to a C-based synthesis flow to enable rapid design and update of PARC. We implemented PARC in a Virtex-6 FPGA chip with integration of platform-specific peripherals and booting of unmodified Linux. Experimental results show that PARC can fully exploit the energy benefits of accelerators at little system overhead.\",\"PeriodicalId\":398811,\"journal\":{\"name\":\"2013 IEEE 31st International Conference on Computer Design (ICCD)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 31st International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2013.6657039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2013.6657039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerator-rich CMPs: From concept to real hardware
Application-specific accelerators provide 10-100× improvement in power efficiency over general-purpose processors. The accelerator-rich architectures are especially promising. This work discusses a prototype of accelerator-rich CMPs (PARC). During our development of PARC in real hardware, we encountered a set of technical challenges and proposed corresponding solutions. First, we provided system IPs that serve a sea of accelerators to transfer data between userspace and accelerator memories without cache overhead. Second, we designed a dedicated interconnect between accelerators and memories to enable memory sharing. Third, we implemented an accelerator manager to virtualize accelerator resources for users. Finally, we developed an automated flow with a number of IP templates and customizable interfaces to a C-based synthesis flow to enable rapid design and update of PARC. We implemented PARC in a Virtex-6 FPGA chip with integration of platform-specific peripherals and booting of unmodified Linux. Experimental results show that PARC can fully exploit the energy benefits of accelerators at little system overhead.