基于压缩RBM道路重构的高速公路小障碍物实时检测

Clement Creusot, Asim Munawar
{"title":"基于压缩RBM道路重构的高速公路小障碍物实时检测","authors":"Clement Creusot, Asim Munawar","doi":"10.1109/IVS.2015.7225680","DOIUrl":null,"url":null,"abstract":"Small objects on the road can become hazardous obstacles when driving at high speed. Detecting such obstacles is vital to guaranty the safety of self-driving car users, especially on highways. Such tasks cannot be performed using existing active sensors such as radar or LIDAR due to their limited range and resolution at long distances. In this paper we propose a technique to detect anomalous patches on the road from color images using a Restricted Boltzman Machine neural network specifically trained to reconstruct the appearance of the road. The differences between the observed and reconstructed road patches yield a more relevant segmentation of anomalies than classic image processing techniques. We evaluated our technique on texture-based synthetic datasets as well as on real video footage of anomalous objects on highways.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Real-time small obstacle detection on highways using compressive RBM road reconstruction\",\"authors\":\"Clement Creusot, Asim Munawar\",\"doi\":\"10.1109/IVS.2015.7225680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small objects on the road can become hazardous obstacles when driving at high speed. Detecting such obstacles is vital to guaranty the safety of self-driving car users, especially on highways. Such tasks cannot be performed using existing active sensors such as radar or LIDAR due to their limited range and resolution at long distances. In this paper we propose a technique to detect anomalous patches on the road from color images using a Restricted Boltzman Machine neural network specifically trained to reconstruct the appearance of the road. The differences between the observed and reconstructed road patches yield a more relevant segmentation of anomalies than classic image processing techniques. We evaluated our technique on texture-based synthetic datasets as well as on real video footage of anomalous objects on highways.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

高速行驶时,路上的小物体会成为危险的障碍物。探测此类障碍物对于保证自动驾驶汽车使用者的安全至关重要,尤其是在高速公路上。由于现有的有源传感器(如雷达或激光雷达)在远距离的范围和分辨率有限,因此无法执行这些任务。在本文中,我们提出了一种从彩色图像中检测道路上异常斑块的技术,该技术使用专门训练用于重建道路外观的受限玻尔兹曼机神经网络。观察到的和重建的道路斑块之间的差异产生了比经典图像处理技术更相关的异常分割。我们在基于纹理的合成数据集以及高速公路上异常物体的真实视频片段上评估了我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time small obstacle detection on highways using compressive RBM road reconstruction
Small objects on the road can become hazardous obstacles when driving at high speed. Detecting such obstacles is vital to guaranty the safety of self-driving car users, especially on highways. Such tasks cannot be performed using existing active sensors such as radar or LIDAR due to their limited range and resolution at long distances. In this paper we propose a technique to detect anomalous patches on the road from color images using a Restricted Boltzman Machine neural network specifically trained to reconstruct the appearance of the road. The differences between the observed and reconstructed road patches yield a more relevant segmentation of anomalies than classic image processing techniques. We evaluated our technique on texture-based synthetic datasets as well as on real video footage of anomalous objects on highways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信