多传感器数据预处理研究

Yan Li, Decheng Wang, Bo Yan
{"title":"多传感器数据预处理研究","authors":"Yan Li, Decheng Wang, Bo Yan","doi":"10.56028/ijcit.1.3.19.2023","DOIUrl":null,"url":null,"abstract":"For multi-sensor data with multi-source heterogeneity, data pre-processing is required for data fusion. This paper proposes a data pre-processing method, firstly, the image data is binarized using the designed image binarization algorithm and flame area extraction algorithm, and the flame area information in the fire image is extracted into one-dimensional data, then the five one-dimensional data of ambient temperature, temperature-sensitive cable, CO2, CO and flame area are noise reduced using the designed wavelet noise reduction algorithm, and finally the final pre-processed data is calculated by the selected normalization formula. The results of the study show that the method can improve the effectiveness of multi-sensor data fusion.","PeriodicalId":393159,"journal":{"name":"International Journal of Computing and Information Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-processing study of multi-sensor data\",\"authors\":\"Yan Li, Decheng Wang, Bo Yan\",\"doi\":\"10.56028/ijcit.1.3.19.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For multi-sensor data with multi-source heterogeneity, data pre-processing is required for data fusion. This paper proposes a data pre-processing method, firstly, the image data is binarized using the designed image binarization algorithm and flame area extraction algorithm, and the flame area information in the fire image is extracted into one-dimensional data, then the five one-dimensional data of ambient temperature, temperature-sensitive cable, CO2, CO and flame area are noise reduced using the designed wavelet noise reduction algorithm, and finally the final pre-processed data is calculated by the selected normalization formula. The results of the study show that the method can improve the effectiveness of multi-sensor data fusion.\",\"PeriodicalId\":393159,\"journal\":{\"name\":\"International Journal of Computing and Information Technology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56028/ijcit.1.3.19.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56028/ijcit.1.3.19.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于多源异构的多传感器数据,需要对数据进行预处理,实现数据融合。本文提出了一种数据预处理方法,首先利用所设计的图像二值化算法和火焰面积提取算法对图像数据进行二值化处理,将火灾图像中的火焰面积信息提取为一维数据,然后利用所设计的小波降噪算法对环境温度、温度敏感电缆、CO2、CO和火焰面积5个一维数据进行降噪处理;最后根据选择的归一化公式计算最终的预处理数据。研究结果表明,该方法可以提高多传感器数据融合的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-processing study of multi-sensor data
For multi-sensor data with multi-source heterogeneity, data pre-processing is required for data fusion. This paper proposes a data pre-processing method, firstly, the image data is binarized using the designed image binarization algorithm and flame area extraction algorithm, and the flame area information in the fire image is extracted into one-dimensional data, then the five one-dimensional data of ambient temperature, temperature-sensitive cable, CO2, CO and flame area are noise reduced using the designed wavelet noise reduction algorithm, and finally the final pre-processed data is calculated by the selected normalization formula. The results of the study show that the method can improve the effectiveness of multi-sensor data fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信