R. Schoeters, T. Tarnaud, W. Joseph, L. Martens, R. Raedt, E. Tanghe
{"title":"直接电刺激和光遗传学丘脑下核刺激的比较","authors":"R. Schoeters, T. Tarnaud, W. Joseph, L. Martens, R. Raedt, E. Tanghe","doi":"10.23919/EMF-MED.2018.8526018","DOIUrl":null,"url":null,"abstract":"Subthalamic nucleus deep brain stimulation is a treatment for Parkinson’s disease. In this study, a computational model of a plateau-potential generating subthalamic nucleus neuron (Otsuka-model) and a four-state ChR2(H134R) model (Williams-model) are combined, in order to compare electrical and optogenetic neuromodulation capabilities. The impact of the stimulation modality (optogenetic or electric) on firing rates, strength-duration curves and action potential shape is investigated. First, in contrast to electrical stimulation, mean instantaneous firing rates saturate for optical stimulation at intensities higher than 0.1 W/cm2. Second, rheobase and chronaxie are 175% and 9.6% larger in optogenetic stimulation compared to electrical stimulation, respectively. Third, action potential shape is not significantly impacted by the neurostimulation modality.","PeriodicalId":134768,"journal":{"name":"2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparison between Direct Electrical and Optogenetic Subthalamic Nucleus Stimulation\",\"authors\":\"R. Schoeters, T. Tarnaud, W. Joseph, L. Martens, R. Raedt, E. Tanghe\",\"doi\":\"10.23919/EMF-MED.2018.8526018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subthalamic nucleus deep brain stimulation is a treatment for Parkinson’s disease. In this study, a computational model of a plateau-potential generating subthalamic nucleus neuron (Otsuka-model) and a four-state ChR2(H134R) model (Williams-model) are combined, in order to compare electrical and optogenetic neuromodulation capabilities. The impact of the stimulation modality (optogenetic or electric) on firing rates, strength-duration curves and action potential shape is investigated. First, in contrast to electrical stimulation, mean instantaneous firing rates saturate for optical stimulation at intensities higher than 0.1 W/cm2. Second, rheobase and chronaxie are 175% and 9.6% larger in optogenetic stimulation compared to electrical stimulation, respectively. Third, action potential shape is not significantly impacted by the neurostimulation modality.\",\"PeriodicalId\":134768,\"journal\":{\"name\":\"2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EMF-MED.2018.8526018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EMF-MED.2018.8526018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison between Direct Electrical and Optogenetic Subthalamic Nucleus Stimulation
Subthalamic nucleus deep brain stimulation is a treatment for Parkinson’s disease. In this study, a computational model of a plateau-potential generating subthalamic nucleus neuron (Otsuka-model) and a four-state ChR2(H134R) model (Williams-model) are combined, in order to compare electrical and optogenetic neuromodulation capabilities. The impact of the stimulation modality (optogenetic or electric) on firing rates, strength-duration curves and action potential shape is investigated. First, in contrast to electrical stimulation, mean instantaneous firing rates saturate for optical stimulation at intensities higher than 0.1 W/cm2. Second, rheobase and chronaxie are 175% and 9.6% larger in optogenetic stimulation compared to electrical stimulation, respectively. Third, action potential shape is not significantly impacted by the neurostimulation modality.