D. A. Bourgoyne, Carolyn Q. Judge, J. Hamel, S. Ceccio, D. Dowling
{"title":"高雷诺数时提升表面流量、压力和振动","authors":"D. A. Bourgoyne, Carolyn Q. Judge, J. Hamel, S. Ceccio, D. Dowling","doi":"10.1115/imece2001/nca-23505","DOIUrl":null,"url":null,"abstract":"\n This paper describes an experimental effort to identify and document the turbulent flow, induced surface pressures, and structural response of a hydrofoil at chord-based Reynolds numbers up to 60 million. Special interest is focused on the trailing edge of the foil where most of the measurements are made. The experiments are conducted at the US Navy’s W. B. Morgan Large Cavitation Channel with a two-dimensional test-section-spanning hydrofoil (2.1 m chord, 3.0 m span) at flow speeds from 0.5 to 18.3 m/s. The foil section is a modified NACA 16 with a flat pressure side. The measurements presented in this paper include foil surface static and dynamic pressures, foil vibration, LDV-determined average flow speeds and turbulence quantities, and PIV flow fields in the immediate vicinity of the foil’s trailing edge.","PeriodicalId":387882,"journal":{"name":"Noise Control and Acoustics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lifting Surface Flow, Pressure, and Vibration at High Reynolds-Number\",\"authors\":\"D. A. Bourgoyne, Carolyn Q. Judge, J. Hamel, S. Ceccio, D. Dowling\",\"doi\":\"10.1115/imece2001/nca-23505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper describes an experimental effort to identify and document the turbulent flow, induced surface pressures, and structural response of a hydrofoil at chord-based Reynolds numbers up to 60 million. Special interest is focused on the trailing edge of the foil where most of the measurements are made. The experiments are conducted at the US Navy’s W. B. Morgan Large Cavitation Channel with a two-dimensional test-section-spanning hydrofoil (2.1 m chord, 3.0 m span) at flow speeds from 0.5 to 18.3 m/s. The foil section is a modified NACA 16 with a flat pressure side. The measurements presented in this paper include foil surface static and dynamic pressures, foil vibration, LDV-determined average flow speeds and turbulence quantities, and PIV flow fields in the immediate vicinity of the foil’s trailing edge.\",\"PeriodicalId\":387882,\"journal\":{\"name\":\"Noise Control and Acoustics\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/nca-23505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/nca-23505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
本文描述了一项实验工作,以确定和记录湍流、诱导表面压力和水翼在弦基雷诺数高达6000万时的结构响应。特别的兴趣集中在箔的后缘,在那里进行了大部分的测量。实验在美国海军的W. B. Morgan大型空化通道中进行,实验采用了一个二维跨截面水翼(2.1 m弦,3.0 m跨),流速从0.5到18.3 m/s。箔段是一个改进的NACA 16与一个平坦的压力侧。本文给出的测量包括箔面静、动压力、箔振动、ldv确定的平均流速和湍流量,以及箔尾缘附近的PIV流场。
Lifting Surface Flow, Pressure, and Vibration at High Reynolds-Number
This paper describes an experimental effort to identify and document the turbulent flow, induced surface pressures, and structural response of a hydrofoil at chord-based Reynolds numbers up to 60 million. Special interest is focused on the trailing edge of the foil where most of the measurements are made. The experiments are conducted at the US Navy’s W. B. Morgan Large Cavitation Channel with a two-dimensional test-section-spanning hydrofoil (2.1 m chord, 3.0 m span) at flow speeds from 0.5 to 18.3 m/s. The foil section is a modified NACA 16 with a flat pressure side. The measurements presented in this paper include foil surface static and dynamic pressures, foil vibration, LDV-determined average flow speeds and turbulence quantities, and PIV flow fields in the immediate vicinity of the foil’s trailing edge.