统计数据非自然部分的检测

Tetsuya Nakatoh, Takahiko Suzuki, Tsukasa Kamimasu, S. Hirokawa
{"title":"统计数据非自然部分的检测","authors":"Tetsuya Nakatoh, Takahiko Suzuki, Tsukasa Kamimasu, S. Hirokawa","doi":"10.52731/iee.v6.i2.569","DOIUrl":null,"url":null,"abstract":"Ensuring the authenticity of statistical data is important because such data are used for various decision-making tasks. However, in practical applications, several types of data alterations have been reported. Therefore, it is necessary to validate the accuracy of statistical data. Benford’s law is a well-known method for detecting unnatural numerical data. According to Benford’s law, the occurrence probability of the first significant digits follows a particular distribution. However, the unnatural parts of data cannot be accurately identi-fied. In this study, we attempted to identify the unnatural parts of statistical data available in tabular format. A subset of the target data was specified using the row and column names that define each cell in the table or the words displayed in the table title. By measuring the divergence of the subsets, we identified the unnatural subsets. In this paper, we present the results of the identification of unnatural subsets using the agricultural data acquired from the China Statistical Yearbook.","PeriodicalId":416504,"journal":{"name":"Information Engineering Express","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Unnatural Parts of Statistical Data\",\"authors\":\"Tetsuya Nakatoh, Takahiko Suzuki, Tsukasa Kamimasu, S. Hirokawa\",\"doi\":\"10.52731/iee.v6.i2.569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring the authenticity of statistical data is important because such data are used for various decision-making tasks. However, in practical applications, several types of data alterations have been reported. Therefore, it is necessary to validate the accuracy of statistical data. Benford’s law is a well-known method for detecting unnatural numerical data. According to Benford’s law, the occurrence probability of the first significant digits follows a particular distribution. However, the unnatural parts of data cannot be accurately identi-fied. In this study, we attempted to identify the unnatural parts of statistical data available in tabular format. A subset of the target data was specified using the row and column names that define each cell in the table or the words displayed in the table title. By measuring the divergence of the subsets, we identified the unnatural subsets. In this paper, we present the results of the identification of unnatural subsets using the agricultural data acquired from the China Statistical Yearbook.\",\"PeriodicalId\":416504,\"journal\":{\"name\":\"Information Engineering Express\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52731/iee.v6.i2.569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52731/iee.v6.i2.569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确保统计数据的真实性很重要,因为这些数据用于各种决策任务。然而,在实际应用中,已经报道了几种类型的数据更改。因此,有必要对统计数据的准确性进行验证。本福德定律是一种众所周知的检测非自然数值数据的方法。根据本福德定律,第一位有效数字出现的概率遵循一个特定的分布。然而,数据的非自然部分不能被准确地识别出来。在这项研究中,我们试图找出统计数据的表格格式的不自然的部分。使用定义表中每个单元格的行名和列名或表标题中显示的单词来指定目标数据的子集。通过测量子集的散度,我们确定了非自然子集。本文介绍了利用《中国统计年鉴》农业数据进行非自然子集识别的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Unnatural Parts of Statistical Data
Ensuring the authenticity of statistical data is important because such data are used for various decision-making tasks. However, in practical applications, several types of data alterations have been reported. Therefore, it is necessary to validate the accuracy of statistical data. Benford’s law is a well-known method for detecting unnatural numerical data. According to Benford’s law, the occurrence probability of the first significant digits follows a particular distribution. However, the unnatural parts of data cannot be accurately identi-fied. In this study, we attempted to identify the unnatural parts of statistical data available in tabular format. A subset of the target data was specified using the row and column names that define each cell in the table or the words displayed in the table title. By measuring the divergence of the subsets, we identified the unnatural subsets. In this paper, we present the results of the identification of unnatural subsets using the agricultural data acquired from the China Statistical Yearbook.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信