基于配置知识的软件产品线的安全组成

Leopoldo Teixeira, Paulo Borba, Rohit Gheyi
{"title":"基于配置知识的软件产品线的安全组成","authors":"Leopoldo Teixeira, Paulo Borba, Rohit Gheyi","doi":"10.1109/SBES.2011.15","DOIUrl":null,"url":null,"abstract":"Feature models and configuration knowledge drive product generation in a Software Product Line (SPL). Mistakes when specifying these models or in the implementation might result in ill-formed products-- the safe composition problem. This work proposes an automated approach for verifying safe composition for SPLs with explicit configuration knowledge models. We translate feature models and configuration knowledge into propositional logic and use SAT Solvers to perform the verification. We evaluate our approach using seven releases of the MobileMedia SPL, which generate up to 272 products in the 7th release. We report safe composition problems related to non-conformity with the feature model, bad specification of the configuration knowledge, and implementation not envisioning the full SPL scope, that affect over 40% of the products in the 7th release.","PeriodicalId":142932,"journal":{"name":"2011 25th Brazilian Symposium on Software Engineering","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Safe Composition of Configuration Knowledge-Based Software Product Lines\",\"authors\":\"Leopoldo Teixeira, Paulo Borba, Rohit Gheyi\",\"doi\":\"10.1109/SBES.2011.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature models and configuration knowledge drive product generation in a Software Product Line (SPL). Mistakes when specifying these models or in the implementation might result in ill-formed products-- the safe composition problem. This work proposes an automated approach for verifying safe composition for SPLs with explicit configuration knowledge models. We translate feature models and configuration knowledge into propositional logic and use SAT Solvers to perform the verification. We evaluate our approach using seven releases of the MobileMedia SPL, which generate up to 272 products in the 7th release. We report safe composition problems related to non-conformity with the feature model, bad specification of the configuration knowledge, and implementation not envisioning the full SPL scope, that affect over 40% of the products in the 7th release.\",\"PeriodicalId\":142932,\"journal\":{\"name\":\"2011 25th Brazilian Symposium on Software Engineering\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 25th Brazilian Symposium on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBES.2011.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 25th Brazilian Symposium on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBES.2011.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

特征模型和配置知识驱动软件产品线(SPL)中的产品生成。在指定这些模型时或在实现中出现错误可能会导致产品格式错误——即安全组合问题。这项工作提出了一种自动化的方法来验证具有显式配置知识模型的SPLs的安全组合。我们将特征模型和配置知识转化为命题逻辑,并使用SAT求解器进行验证。我们使用MobileMedia SPL的七个版本来评估我们的方法,在第7个版本中产生了多达272个产品。我们报告了安全组合问题,这些问题与不符合特性模型、配置知识的不良规范以及实现没有考虑到完整的SPL范围有关,这些问题影响了第7版中超过40%的产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safe Composition of Configuration Knowledge-Based Software Product Lines
Feature models and configuration knowledge drive product generation in a Software Product Line (SPL). Mistakes when specifying these models or in the implementation might result in ill-formed products-- the safe composition problem. This work proposes an automated approach for verifying safe composition for SPLs with explicit configuration knowledge models. We translate feature models and configuration knowledge into propositional logic and use SAT Solvers to perform the verification. We evaluate our approach using seven releases of the MobileMedia SPL, which generate up to 272 products in the 7th release. We report safe composition problems related to non-conformity with the feature model, bad specification of the configuration knowledge, and implementation not envisioning the full SPL scope, that affect over 40% of the products in the 7th release.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信