非线性多目标优化问题的牛顿型近端梯度法

M. A. T. Ansary
{"title":"非线性多目标优化问题的牛顿型近端梯度法","authors":"M. A. T. Ansary","doi":"10.1080/10556788.2022.2157000","DOIUrl":null,"url":null,"abstract":"In this paper, a globally convergent Newton-type proximal gradient method is developed for composite multi-objective optimization problems where each objective function can be represented as the sum of a smooth function and a nonsmooth function. The proposed method deals with unconstrained convex multi-objective optimization problems. This method is free from any kind of priori chosen parameters or ordering information of objective functions. At every iteration of the proposed method, a subproblem is solved to find a suitable descent direction. The subproblem uses a quadratic approximation of each smooth function. An Armijo type line search is conducted to find a suitable step length. A sequence is generated using the descent direction and the step length. The global convergence of this method is justified under some mild assumptions. The proposed method is verified and compared with some existing methods using a set of test problems.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Newton-type proximal gradient method for nonlinear multi-objective optimization problems\",\"authors\":\"M. A. T. Ansary\",\"doi\":\"10.1080/10556788.2022.2157000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a globally convergent Newton-type proximal gradient method is developed for composite multi-objective optimization problems where each objective function can be represented as the sum of a smooth function and a nonsmooth function. The proposed method deals with unconstrained convex multi-objective optimization problems. This method is free from any kind of priori chosen parameters or ordering information of objective functions. At every iteration of the proposed method, a subproblem is solved to find a suitable descent direction. The subproblem uses a quadratic approximation of each smooth function. An Armijo type line search is conducted to find a suitable step length. A sequence is generated using the descent direction and the step length. The global convergence of this method is justified under some mild assumptions. The proposed method is verified and compared with some existing methods using a set of test problems.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2157000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2157000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对复合多目标优化问题,提出了一种全局收敛的牛顿型近端梯度方法,其中每个目标函数都可以表示为光滑函数和非光滑函数的和。该方法处理无约束凸多目标优化问题。该方法不需要任何类型的先验选择参数或目标函数的排序信息。在该方法的每次迭代中,求解一个子问题以找到合适的下降方向。子问题使用每个光滑函数的二次逼近。通过Armijo型线搜索来寻找合适的步长。利用下降方向和步长生成序列。在一些温和的假设下,证明了该方法的全局收敛性。通过一组测试问题对所提方法进行了验证,并与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Newton-type proximal gradient method for nonlinear multi-objective optimization problems
In this paper, a globally convergent Newton-type proximal gradient method is developed for composite multi-objective optimization problems where each objective function can be represented as the sum of a smooth function and a nonsmooth function. The proposed method deals with unconstrained convex multi-objective optimization problems. This method is free from any kind of priori chosen parameters or ordering information of objective functions. At every iteration of the proposed method, a subproblem is solved to find a suitable descent direction. The subproblem uses a quadratic approximation of each smooth function. An Armijo type line search is conducted to find a suitable step length. A sequence is generated using the descent direction and the step length. The global convergence of this method is justified under some mild assumptions. The proposed method is verified and compared with some existing methods using a set of test problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信