括号多项式之间的约简

Hongbo Li, Changpeng Shao, Lei Huang, Yue Liu
{"title":"括号多项式之间的约简","authors":"Hongbo Li, Changpeng Shao, Lei Huang, Yue Liu","doi":"10.1145/2608628.2608630","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an <i>SL</i>(<i>n</i>)-invariant division of <i>SL</i>(<i>n</i>)-invariant polynomials by establishing an admissible order among the invariant polynomials in normal form. The invariant division leads to an invariant Gröbner basis theory.\n The invariant division is closely related to multivariate coordinate polynomial division. This feature leads to a proof of the result that if <i>f</i><sub>1</sub>,..., <i>f</i><sub><i>k</i></sub> are <i>SL</i>(<i>n</i>,K)-invariant where K is an arbitrary field, possibly of positive characteristic, then the invariant ideal generated by them is the intersection of the ideal generated by the <i>f</i><sub><i>i</i></sub> in the polynomial ring of coordinates with the algebra of invariants.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reduction among bracket polynomials\",\"authors\":\"Hongbo Li, Changpeng Shao, Lei Huang, Yue Liu\",\"doi\":\"10.1145/2608628.2608630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an <i>SL</i>(<i>n</i>)-invariant division of <i>SL</i>(<i>n</i>)-invariant polynomials by establishing an admissible order among the invariant polynomials in normal form. The invariant division leads to an invariant Gröbner basis theory.\\n The invariant division is closely related to multivariate coordinate polynomial division. This feature leads to a proof of the result that if <i>f</i><sub>1</sub>,..., <i>f</i><sub><i>k</i></sub> are <i>SL</i>(<i>n</i>,K)-invariant where K is an arbitrary field, possibly of positive characteristic, then the invariant ideal generated by them is the intersection of the ideal generated by the <i>f</i><sub><i>i</i></sub> in the polynomial ring of coordinates with the algebra of invariants.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文通过在正规多项式中建立一个可容许的阶,给出了SL(n)-不变多项式的一个SL(n)-不变除法。不变量划分导致不变量Gröbner基理论。不变除法与多元坐标多项式除法密切相关。这个特性证明了如果f1,…, fk是SL(n,K)-不变量,其中K是任意域,可能是正特征域,那么由它们生成的不变量理想是由坐标多项式环中的fi与不变量代数生成的理想的交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction among bracket polynomials
In this paper, we propose an SL(n)-invariant division of SL(n)-invariant polynomials by establishing an admissible order among the invariant polynomials in normal form. The invariant division leads to an invariant Gröbner basis theory. The invariant division is closely related to multivariate coordinate polynomial division. This feature leads to a proof of the result that if f1,..., fk are SL(n,K)-invariant where K is an arbitrary field, possibly of positive characteristic, then the invariant ideal generated by them is the intersection of the ideal generated by the fi in the polynomial ring of coordinates with the algebra of invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信