一种新的10约束高斯图模型用于异常定位

D. Phan, T. Idé, J. Kalagnanam, M. Menickelly, K. Scheinberg
{"title":"一种新的10约束高斯图模型用于异常定位","authors":"D. Phan, T. Idé, J. Kalagnanam, M. Menickelly, K. Scheinberg","doi":"10.1109/ICDMW.2017.115","DOIUrl":null,"url":null,"abstract":"We consider the problem of anomaly localization in a sensor network for multivariate time-series data by computing anomaly scores for each variable separately. To estimate the sparse Gaussian graphical models (GGMs) learned from different sliding windows of the dataset, we propose a new model wherein we constrain sparsity directly through L0 constraint and apply an additional L2 regularization in the objective. We then introduce a proximal gradient algorithm to efficiently solve this difficult nonconvex problem. Numerical evidence is provided to show the benefits of using our model and method over the usual convex relaxations for learning sparse GGMs using a real dataset.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel l0-Constrained Gaussian Graphical Model for Anomaly Localization\",\"authors\":\"D. Phan, T. Idé, J. Kalagnanam, M. Menickelly, K. Scheinberg\",\"doi\":\"10.1109/ICDMW.2017.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of anomaly localization in a sensor network for multivariate time-series data by computing anomaly scores for each variable separately. To estimate the sparse Gaussian graphical models (GGMs) learned from different sliding windows of the dataset, we propose a new model wherein we constrain sparsity directly through L0 constraint and apply an additional L2 regularization in the objective. We then introduce a proximal gradient algorithm to efficiently solve this difficult nonconvex problem. Numerical evidence is provided to show the benefits of using our model and method over the usual convex relaxations for learning sparse GGMs using a real dataset.\",\"PeriodicalId\":389183,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了多变量时间序列数据的传感器网络异常定位问题,方法是分别计算每个变量的异常分数。为了估计从数据集的不同滑动窗口学习到的稀疏高斯图形模型(GGMs),我们提出了一种新的模型,其中我们直接通过L0约束约束稀疏性,并在目标中应用额外的L2正则化。然后,我们引入了一个近端梯度算法来有效地解决这个困难的非凸问题。数值证据表明,在使用真实数据集学习稀疏ggm时,使用我们的模型和方法优于通常的凸松弛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel l0-Constrained Gaussian Graphical Model for Anomaly Localization
We consider the problem of anomaly localization in a sensor network for multivariate time-series data by computing anomaly scores for each variable separately. To estimate the sparse Gaussian graphical models (GGMs) learned from different sliding windows of the dataset, we propose a new model wherein we constrain sparsity directly through L0 constraint and apply an additional L2 regularization in the objective. We then introduce a proximal gradient algorithm to efficiently solve this difficult nonconvex problem. Numerical evidence is provided to show the benefits of using our model and method over the usual convex relaxations for learning sparse GGMs using a real dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信