基于局部二值模式的非焦点和焦点脑电信号分类

J. Prasanna, N. Sairamya, S. Thomas George, C. Ruth Vinutha, M. Subathra
{"title":"基于局部二值模式的非焦点和焦点脑电信号分类","authors":"J. Prasanna, N. Sairamya, S. Thomas George, C. Ruth Vinutha, M. Subathra","doi":"10.1109/ICCCI.2019.8822080","DOIUrl":null,"url":null,"abstract":"Electroencephalogram is a clinical diagnoses tool that monitors the electrical impulses of the cerebrum. It is used to sense the glitch in the brain due to the recurrent existence of the seizures known as epilepsy. The detection of epileptic seizures by human examination is time consuming and it results in misconception. Therefore in this paper an effective feature extraction method of local binary pattern (LBP) is introduced for the automatic identification of epilepsy to reduce the complexity of the human examination. The extracted features are classified by employing artificial neural network (ANN) classifier to discriminate non-focal and focal EEG signals. The epilepsy EEG dataset furnished by Bern- Barcelona contains 3750 pairs of EEG signals from non-focal and focal class used in this study. 10-fold cross validation is performed to evaluate the discrimination performance. The proposed method LBP with ANN classifier achieved a 93.21% of accuracy, 93.63% of specificity and sensitivity of 92.80%.","PeriodicalId":302941,"journal":{"name":"2019 International Conference on Computer Communication and Informatics (ICCCI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Non-focal and Focal EEG signals using Local Binary Pattern\",\"authors\":\"J. Prasanna, N. Sairamya, S. Thomas George, C. Ruth Vinutha, M. Subathra\",\"doi\":\"10.1109/ICCCI.2019.8822080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalogram is a clinical diagnoses tool that monitors the electrical impulses of the cerebrum. It is used to sense the glitch in the brain due to the recurrent existence of the seizures known as epilepsy. The detection of epileptic seizures by human examination is time consuming and it results in misconception. Therefore in this paper an effective feature extraction method of local binary pattern (LBP) is introduced for the automatic identification of epilepsy to reduce the complexity of the human examination. The extracted features are classified by employing artificial neural network (ANN) classifier to discriminate non-focal and focal EEG signals. The epilepsy EEG dataset furnished by Bern- Barcelona contains 3750 pairs of EEG signals from non-focal and focal class used in this study. 10-fold cross validation is performed to evaluate the discrimination performance. The proposed method LBP with ANN classifier achieved a 93.21% of accuracy, 93.63% of specificity and sensitivity of 92.80%.\",\"PeriodicalId\":302941,\"journal\":{\"name\":\"2019 International Conference on Computer Communication and Informatics (ICCCI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computer Communication and Informatics (ICCCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCI.2019.8822080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computer Communication and Informatics (ICCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCI.2019.8822080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脑电图是一种监测大脑电脉冲的临床诊断工具。它被用来感知大脑中的小故障,这是由于癫痫发作的反复存在造成的。通过人体检查来检测癫痫发作既费时又容易引起误解。为此,本文提出了一种有效的局部二值模式特征提取方法,用于癫痫的自动识别,以降低人体检测的复杂性。利用人工神经网络(ANN)分类器对提取的特征进行分类,区分非病灶和病灶脑电信号。由Bern- Barcelona提供的癫痫EEG数据集包含了本研究中使用的非局灶类和局灶类的3750对EEG信号。进行10倍交叉验证以评估识别性能。该方法的准确率为93.21%,特异性为93.63%,灵敏度为92.80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Non-focal and Focal EEG signals using Local Binary Pattern
Electroencephalogram is a clinical diagnoses tool that monitors the electrical impulses of the cerebrum. It is used to sense the glitch in the brain due to the recurrent existence of the seizures known as epilepsy. The detection of epileptic seizures by human examination is time consuming and it results in misconception. Therefore in this paper an effective feature extraction method of local binary pattern (LBP) is introduced for the automatic identification of epilepsy to reduce the complexity of the human examination. The extracted features are classified by employing artificial neural network (ANN) classifier to discriminate non-focal and focal EEG signals. The epilepsy EEG dataset furnished by Bern- Barcelona contains 3750 pairs of EEG signals from non-focal and focal class used in this study. 10-fold cross validation is performed to evaluate the discrimination performance. The proposed method LBP with ANN classifier achieved a 93.21% of accuracy, 93.63% of specificity and sensitivity of 92.80%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信