具身问答

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, Dhruv Batra
{"title":"具身问答","authors":"Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, Dhruv Batra","doi":"10.1109/CVPRW.2018.00279","DOIUrl":null,"url":null,"abstract":"We present a new AI task - Embodied Question Answering (EmbodiedQA) - where an agent is spawned at a random location in a 3D environment and asked a question ('What color is the car?'). In order to answer, the agent must first intelligently navigate to explore the environment, gather necessary visual information through first-person (egocentric) vision, and then answer the question ('orange'). EmbodiedQA requires a range of AI skills - language understanding, visual recognition, active perception, goal-driven navigation, commonsense reasoning, long-term memory, and grounding language into actions. In this work, we develop a dataset of questions and answers in House3D environments [1], evaluation metrics, and a hierarchical model trained with imitation and reinforcement learning.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embodied Question Answering\",\"authors\":\"Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, Dhruv Batra\",\"doi\":\"10.1109/CVPRW.2018.00279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new AI task - Embodied Question Answering (EmbodiedQA) - where an agent is spawned at a random location in a 3D environment and asked a question ('What color is the car?'). In order to answer, the agent must first intelligently navigate to explore the environment, gather necessary visual information through first-person (egocentric) vision, and then answer the question ('orange'). EmbodiedQA requires a range of AI skills - language understanding, visual recognition, active perception, goal-driven navigation, commonsense reasoning, long-term memory, and grounding language into actions. In this work, we develop a dataset of questions and answers in House3D environments [1], evaluation metrics, and a hierarchical model trained with imitation and reinforcement learning.\",\"PeriodicalId\":150600,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2018.00279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新的人工智能任务——具体化问答(EmbodiedQA)——在3D环境中随机生成一个代理,并问一个问题(“汽车是什么颜色的?”)。为了回答这个问题,智能体必须首先智能导航探索环境,通过第一人称(自我中心)视觉收集必要的视觉信息,然后回答问题(“橙色”)。EmbodiedQA需要一系列AI技能——语言理解、视觉识别、主动感知、目标驱动导航、常识性推理、长期记忆以及将语言融入行动。在这项工作中,我们在House3D环境中开发了一个问题和答案的数据集b[1],评估指标,以及一个用模仿和强化学习训练的分层模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embodied Question Answering
We present a new AI task - Embodied Question Answering (EmbodiedQA) - where an agent is spawned at a random location in a 3D environment and asked a question ('What color is the car?'). In order to answer, the agent must first intelligently navigate to explore the environment, gather necessary visual information through first-person (egocentric) vision, and then answer the question ('orange'). EmbodiedQA requires a range of AI skills - language understanding, visual recognition, active perception, goal-driven navigation, commonsense reasoning, long-term memory, and grounding language into actions. In this work, we develop a dataset of questions and answers in House3D environments [1], evaluation metrics, and a hierarchical model trained with imitation and reinforcement learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信