突触抑制动力学的非光滑优化

Nouhayla Ait Oussaid, Mourad El Ouali, Sultana Ben Aadi, Khalid Akhlil, Salma Gaou
{"title":"突触抑制动力学的非光滑优化","authors":"Nouhayla Ait Oussaid, Mourad El Ouali, Sultana Ben Aadi, Khalid Akhlil, Salma Gaou","doi":"10.1109/ICOA55659.2022.9934531","DOIUrl":null,"url":null,"abstract":"In the present paper, we present a non-smooth optimization problem for the synaptic depression model. It involves the Laplace operator defined on locally finite graphs and the local Lipschitz function's Clarke subdifferential. Our basic goal is to show the existence of a weak solution to this problem by using a Galerkin-like method involving an exhaustion procedure. On the multivalued nonmonotone and nonconvex part, we assume the so-called Rauch condition, which expresses the nonmonotonicity of the nonlinearities.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonsmooth Optimization for Synaptic Depression Dynamics\",\"authors\":\"Nouhayla Ait Oussaid, Mourad El Ouali, Sultana Ben Aadi, Khalid Akhlil, Salma Gaou\",\"doi\":\"10.1109/ICOA55659.2022.9934531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we present a non-smooth optimization problem for the synaptic depression model. It involves the Laplace operator defined on locally finite graphs and the local Lipschitz function's Clarke subdifferential. Our basic goal is to show the existence of a weak solution to this problem by using a Galerkin-like method involving an exhaustion procedure. On the multivalued nonmonotone and nonconvex part, we assume the so-called Rauch condition, which expresses the nonmonotonicity of the nonlinearities.\",\"PeriodicalId\":345017,\"journal\":{\"name\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOA55659.2022.9934531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了突触抑制模型的非光滑优化问题。它涉及到在局部有限图上定义的拉普拉斯算子和局部Lipschitz函数的Clarke子微分。我们的基本目标是通过使用涉及耗尽过程的类似galerkin的方法来证明这个问题的弱解的存在性。在多值非单调和非凸部分,我们假定所谓的Rauch条件,它表示非线性的非单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonsmooth Optimization for Synaptic Depression Dynamics
In the present paper, we present a non-smooth optimization problem for the synaptic depression model. It involves the Laplace operator defined on locally finite graphs and the local Lipschitz function's Clarke subdifferential. Our basic goal is to show the existence of a weak solution to this problem by using a Galerkin-like method involving an exhaustion procedure. On the multivalued nonmonotone and nonconvex part, we assume the so-called Rauch condition, which expresses the nonmonotonicity of the nonlinearities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信