群体关系与个体行为的共同学习

Chihiro Nakatani, Hiroaki Kawashima, N. Ukita
{"title":"群体关系与个体行为的共同学习","authors":"Chihiro Nakatani, Hiroaki Kawashima, N. Ukita","doi":"10.23919/MVA57639.2023.10215994","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for group relation learning. Different from related work in which the manual annotation of group activities is required for supervised learning, we propose group relation learning without group activity annotation through recognition of individual action that can be more easily annotated than group activities defined with complex inter-people relationships. Our method extracts features informative for recognizing the action of each person by conditioning the group relation with the location of this person. A variety of experimental results demonstrate that our method outperforms SOTA methods quantitatively and qualitatively on two public datasets.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Learning with Group Relation and Individual Action\",\"authors\":\"Chihiro Nakatani, Hiroaki Kawashima, N. Ukita\",\"doi\":\"10.23919/MVA57639.2023.10215994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for group relation learning. Different from related work in which the manual annotation of group activities is required for supervised learning, we propose group relation learning without group activity annotation through recognition of individual action that can be more easily annotated than group activities defined with complex inter-people relationships. Our method extracts features informative for recognizing the action of each person by conditioning the group relation with the location of this person. A variety of experimental results demonstrate that our method outperforms SOTA methods quantitatively and qualitatively on two public datasets.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种群体关系学习方法。与以往需要手工标注小组活动才能进行监督学习的相关工作不同,我们提出了不需要标注小组活动的小组关系学习,通过对个体行为的识别,可以比具有复杂人际关系的小组活动更容易标注。我们的方法通过将群体关系与每个人的位置联系起来,提取信息丰富的特征来识别每个人的行为。各种实验结果表明,我们的方法在两个公共数据集上的定量和定性都优于SOTA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Learning with Group Relation and Individual Action
This paper proposes a method for group relation learning. Different from related work in which the manual annotation of group activities is required for supervised learning, we propose group relation learning without group activity annotation through recognition of individual action that can be more easily annotated than group activities defined with complex inter-people relationships. Our method extracts features informative for recognizing the action of each person by conditioning the group relation with the location of this person. A variety of experimental results demonstrate that our method outperforms SOTA methods quantitatively and qualitatively on two public datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信