{"title":"飞秒激光刻字增强瑞利后向散射点测量振动的本征法布里-珀罗干涉仪","authors":"Yang Yang, Mohan Wang, Q. Yu, Kevin P. Chen","doi":"10.1109/IPCon.2019.8908419","DOIUrl":null,"url":null,"abstract":"A new vibration measurement scheme is developed with an intrinsic Fabry-Perot interferometer (IFPI) built by two enhanced Rayleigh backscattering dots fabricated by femtosecond laser inscription. The cavity length of IFPI is absolutely and real-timely demodulated by fast white light interferometer demodulation.","PeriodicalId":314151,"journal":{"name":"2019 IEEE Photonics Conference (IPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic Fabry-Perot Interferometer for Vibration Measurement by Enhanced Rayleigh Backscattering Dots Fabricated by Femtosecond Laser Inscription\",\"authors\":\"Yang Yang, Mohan Wang, Q. Yu, Kevin P. Chen\",\"doi\":\"10.1109/IPCon.2019.8908419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new vibration measurement scheme is developed with an intrinsic Fabry-Perot interferometer (IFPI) built by two enhanced Rayleigh backscattering dots fabricated by femtosecond laser inscription. The cavity length of IFPI is absolutely and real-timely demodulated by fast white light interferometer demodulation.\",\"PeriodicalId\":314151,\"journal\":{\"name\":\"2019 IEEE Photonics Conference (IPC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPCon.2019.8908419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCon.2019.8908419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intrinsic Fabry-Perot Interferometer for Vibration Measurement by Enhanced Rayleigh Backscattering Dots Fabricated by Femtosecond Laser Inscription
A new vibration measurement scheme is developed with an intrinsic Fabry-Perot interferometer (IFPI) built by two enhanced Rayleigh backscattering dots fabricated by femtosecond laser inscription. The cavity length of IFPI is absolutely and real-timely demodulated by fast white light interferometer demodulation.